Реакции матричного синтеза. Метаболизм клетки

Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.

Роль ФТФ в метаболизме

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам.

АТФ (аденозинтрифосфорная кислота) - мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.

В этих связях запасена энергия, которая высвобождается при их разрыве:
АТФ + H 2 O → АДФ + H 3 PO 4 + Q 1
АДФ + H 2 O → АМФ + H 3 PO 4 + Q 2
АМФ + H 2 O → аденин + рибоза + H 3 PO 4 + Q 3 ,
где АТФ - аденозинтрифосфорная кислота; АДФ - аденозиндифосфорная кислота; АМФ - аденозинмонофосфорная кислота; Q 1 = Q 2 = 30,6 кДж; Q 3 = 13,8 кДж.
Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования. Фосфорилирование - присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).
Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза). Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.

Энергетический обмен

Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций. Важнейшим соединением, выступающим в роли топлива, является глюкоза.
По отношению к свободному кислороду организмы делятся на три группы.

Классификация организмов по отношению к свободному кислороду

У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа: подготовительный, бес- кислородный и кислородный. В результате органические вещества распадаются до неорганических соединений. У облигатных анаэробов и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа: подготовительный и бескислородный. В результате образуются промежуточные органические соединения, еще богатые энергией.

Этапы катаболизма

1. Первый этап - подготовительный - заключается в ферментативном расщеплении сложных органических соединений на более простые. Белки расщепляются до аминокислот, жиры - до глицерина и жирных кислот, полисахариды - до моносахаридов, нуклеиновые кислоты - до нуклеотидов. У многоклеточных организмов это происходит в желудочно-кишечном тракте, у одноклеточных - в лизосомах под действием гидролитических ферментов. Высвобождающаяся при этом энергия рассеивается в виде теплоты. Образовавшиеся органические соединения либо подвергаются дальнейшему окислению, либо используются клеткой для синтеза собственных органических соединений.
2. Второй этап - неполное окисление (бескислородный) - заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода. Главным источником энергии в клетке является глюкоза. Бескислородное, неполное окисление глюкозы называется гликолизом. В результате гликолиза одной молекулы глюкозы образуется по две молекулы пировиноградной кислоты (ПВК, пируват) CH 3 COCOOH, АТФ и воды, а также атомы водорода, которые связываются молекулой-переносчиком НАД + и запасаются в виде НАД·Н.
Суммарная формула гликолиза имеет следующий вид:
C 6 H 12 O 6 + 2H 3 PO 4 + 2АДФ + 2НАД+ → 2C 3 Н 4 O 3 + 2H 2 O + 2АТФ + 2НАД·Н.
Далее при отсутствии в среде кислорода продукты гликолиза (ПВК и НАД·Н) перерабатываются либо в этиловый спирт - спиртовое брожение (в клетках дрожжей и растений при недостатке кислорода)
CH 3 COCOOH → СО 2 + СН 3 СОН
СН 3 СОН + 2НАД·Н → С 2 Н 5 ОН + 2НАД + ,
либо в молочную кислоту - молочнокислое брожение (в клетках животных при недостатке кислорода)
CH 3 COCOOH + 2НАД·Н → C 3 Н 6 O 3 + 2НАД + .
При наличии в среде кислорода продукты гликолиза претерпевают дальнейшее расщепление до конечных продуктов.
3. Третий этап - полное окисление (дыхание) - заключается в окислении ПВК до углекислого газа и воды, осуществляется в митохондриях при обязательном участии кислорода.
Он состоит из трёх стадий:
А) образование ацетилкоэнзима А;
Б) окисление ацетилкоэнзима А в цикле Кребса;
В) окислительное фосфорилирование в электронотранспортной цепи.

А. На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует 1) диоксид углерода, который выводится из клетки; 2) атомы водорода, которые молекулами-переносчиками доставляются к внутренней мембране митохондрии; 3) ацетилкофермент А (ацетил-КоА).
Б. На второй стадии происходит окисление ацетилкоэнзима А в цикле Кребса. Цикл Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты) - это цепь последовательных реакций, в ходе которых из одной молекулы ацетил-КоА образуются 1) две молекулы диоксида углерода, 2) молекула АТФ и 3) четыре пары атомов водорода, передаваемые на молекулы-переносчики - НАД и ФАД. Таким образом, в результате гликолиза и цикла Кребса молекула глюкозы расщепляется до СО 2 , а высвободившаяся при этом энергия расходуется на синтез 4 АТФ и накапливается в 10 НАД·Н и 4 ФАД·Н 2 .
В. На третьей стадии атомы водорода с НАД·Н и ФАД·Н 2 окисляются молекулярным кислородом О 2 с образованием воды. Один НАД·Н способен образовывать 3 АТФ, а один ФАД·Н 2 –2 АТФ. Таким образом, выделяющаяся при этом энергия запасается в виде ещё 34 АТФ.
Этот процесс протекает следующим образом. Атомы водорода концентрируются около наружной стороны внутренней мембраны митохондрии. Они теряют электроны, которые по цепи молекул-переносчиков (цитохромов) электронотранспортной цепи (ЭТЦ) переносятся на внутреннюю сторону внутренней мембраны, где соединяются с молекулами кислорода:
О 2 + е - → О 2 - .
В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счёт О 2 -), а снаружи - положительно (за счёт Н +), так что между её поверхностями создаётся разность потенциалов. Во внутреннюю мембрану митохондрий встроены молекулы фермента АТФ- синтетазы, обладающие ионным каналом. Когда разность потенциалов на мембране достигает критического уровня, положительно заряженные частицы H + силой электрического поля начинают проталкиваться через канал АТФазы и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду:
1/2О 2 - +2H + → Н 2 О.
Энергия ионов водорода H + , транспортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования АДФ в АТФ:
АДФ + Ф → АТФ.
Такое образование АТФ в митохондриях при участии кислорода называется окислительным фосфорилированием.
Суммарное уравнение расщепления глюкозы в процессе клеточного дыхания:
C 6 H 12 O 6 + 6O 2 + 38H 3 PO 4 + 38АДФ → 6CO 2 + 44H 2 O + 38АТФ.
Таким образом, в ходе гликолиза образуются 2 молекулы АТФ, в ходе клеточного дыхания - ещё 36 молекул АТФ, в целом при пол- ном окислении глюкозы - 38 молекул АТФ.

Пластический обмен

Пластический обмен, или ассимиляция, представляет собой совокупность реакций, обеспечивающих синтез сложных органических соединений из более простых (фотосинтез, хемосинтез, биосинтез белка и др.).

Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул:
органические вещества пищи (белки, жиры, углеводы) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).
Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе фото- и хемосинтеза происходит образование простых органических соединений, из которых в дальнейшем синтезируются макромолекулы:
неорганические вещества (СО 2 , Н 2 О) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).

Фотосинтез

Фотосинтез - синтез органических соединений из неорганических за счёт энергии света. Суммарное уравнение фотосинтеза:

Фотосинтез протекает при участии фотосинтезирующих пигментов , обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Фотосинтезирующие пигменты представляют собой белковоподобные вещества. Наиболее важным является пигмент хлорофилл. У эукариот фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид, у прокариот - во впячивания цитоплазматической мембраны.
Строение хлоропласта очень похоже на строение митохондрии. Во внутренней мембране тилакоидов гран содержатся фотосинтетические пигменты, а также белки цепи переноса электронов и молекулы фермента АТФ-синтетазы.
Процесс фотосинтеза состоит из двух фаз: световой и темновой.
1. Световая фаза фотосинтеза протекает только на свету в мембране тилакоидов граны.
К ней относятся поглощение хлорофиллом квантов света, образование молекулы АТФ и фотолиз воды.
Под действием кванта света (hv) хлорофилл теряет электроны, переходя в возбуждённое состояние:

Эти электроны передаются переносчиками на наружную, то есть обращенную к матриксу поверхность мембраны тилакоидов, где накапливаются.
Одновременно внутри тилакоидов происходит фотолиз воды, то есть её разложение под действием света:

Образующиеся электроны передаются переносчиками к молекулам хлорофилла и восстанавливают их. Молекулы хлорофилла возвращаются в стабильное состояние.
Протоны водорода, образовавшиеся при фотолизе воды, накапливаются внутри тилакоида, создавая Н + -резервуар. В результате внутренняя поверхность мембраны тилакоида заряжается положительно (за счёт Н +), а наружная - отрицательно (за счёт е -). По мере накопления по обе стороны мембраны противоположно заряженных частиц нарастает разность потенциалов. При достижении критической величины разности потенциалов сила электрического поля начинает проталкивать протоны через канал АТФ-синтетазы. Выделяющаяся при этом энергия используется для фосфорилирования молекул АДФ:
АДФ + Ф → АТФ.

Образование АТФ в процессе фотосинтеза под действием энергии света называется фотофосфорилированием .
Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами и образуют атомарный водород, который связывается с молекулой-переносчиком водорода НАДФ (никотинамидадениндинуклеотидфосфат):
2Н + + 4е – + НАДФ + → НАДФ·Н 2 .
Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ·Н 2 . Кислород диффундирует в атмосферу, а АТФ и НАДФ·Н 2 участвуют в процессах темновой фазы.
2. Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО 2 , поступающего из воздуха, в цикле Кальвина. Осуществляются реакции темновой фазы за счёт энергии АТФ. В цикле Кальвина СО 2 связывается с водородом из НАДФ·Н 2 с образованием глюкозы.
В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соединений - аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и всё живое на Земле необходимыми органическими веществами и кислородом.
Сравнительная характеристика фотосинтеза и дыхания эукариот представлена в таблице.

Сравнительная характеристика фотосинтеза и дыхания эукариот

Признак Фотосинтез Дыхание
Уравнение реакции 6СО 2 + 6Н 2 О + энергия света → C 6 H 12 O 6 + 6O 2 C 6 H 12 O 6 + 6O 2 → 6СО 2 + 6Н 2 О + энергия (АТФ)
Исходные вещества Углекислый газ, вода
Продукты реакции Органические вещества, кислород Углекислый газ, вода
Значение в круговороте веществ Синтез органических веществ из неорганических Разложение органических веществ до неорганических
Превращение энергии Превращение энергии света в энергию химических связей органических веществ Превращение энергии химических связей органических веществ в энергию макроэргических связей АТФ
Важнейшие этапы Световая и темновая фаза (включая цикл Кальвина) Неполное окисление (гликолиз) и полное окисление (включая цикл Кребса)
Место протекания процесса Хлоропласты Гиалоплазма (неполное окисление) и митохондрии (полное окисление)

Генетическая информация у всех организмов хранится в виде определённой последовательности нуклеотидов ДНК (или РНК у РНК-содержащих вирусов). Прокариоты содержат генетическую информацию в виде одной молекулы ДНК. В эукариотических клетках генетический материал распределён в нескольких молекулах ДНК, организованных в хромосомы.
ДНК состоит из кодирующих и некодирующих участков. Кодирующие участки кодируют РНК. Некодирующие области ДНК выполняют структурную функцию, позволяя участкам генетического материала упаковываться определённым образом, или регуляторную функцию, участвуя во включении генов, направляющих синтез белка.
Кодирующими участками ДНК являются гены. Ген - участок молекулы ДНК, кодирующей синтез одной мРНК (и соответственно полипептида), рРНК или тРНК.
Участок хромосомы, где расположен ген называется локусом . Совокупность генов клеточного ядра представляет собой генотип , совокупность генов гаплоидного набора хромосом - гено́м , совокупность генов внеядерных ДНК (митохондрий, пластид, цитоплазмы) - плазмон .
Реализация информации, записанной в генах, через синтез белков называется экспрессией (проявлением) генов. Генетическая информация хранится в виде определённой последовательности нуклеотидов ДНК, а реализуется в виде последовательности аминокислот в белке. Посредниками, переносчиками информации выступают РНК. То есть реализация генетической информации происходит следующим образом:
ДНК → РНК → белок.
Этот процесс осуществляется в два этапа:
1) транскрипция;
2) трансляция.

Транскрипция (от лат. transcriptio - переписывание) - синтез РНК с использованием ДНК в качестве матрицы. В результате образуются мРНК, тРНК и рРНК. Процесс транскрипции требует больших затрат энергии в виде АТФ и осуществляется ферментом РНК-полимеразой.

Одновременно транскрибируется не вся молекула ДНК, а лишь отдельные её отрезки. Такой отрезок (транскриптон ) начинается промотором - участком ДНК, куда присоединяется РНК-полимераза и откуда начинается транскрипция, а заканчивается терминатором - участком ДНК, содержащим сигнал окончания транскрипции. Транскриптон - это ген с точки зрения молекулярной биологии.
Транскрипция, как и репликация, основана на способности азотистых оснований нуклеотидов к комплементарному связыванию. На время транскрипции двойная цепь ДНК разрывается, и синтез РНК осуществляется по одной цепи ДНК.

В процессе транскрипции последовательность нуклеотидов ДНК переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка.
Гены прокариот состоят только из кодирующих нуклеотидных последовательностей.

Гены эукариот состоят из чередующихся кодирующих (экзонов ) и некодирующих (интронов ) участков.

После транскрипции участки мРНК, соответствующие интронам, удаляются в ходе сплайсинга, являющегося составной частью процессинга.

Процессинг - процесс формирования зрелой мРНК из её предшественника пре-мРНК. Он включает два основных события. 1.Присоединение к концам мРНК коротких последовательностей нуклеотидов, обозначающих место начала и место конца трансляции. Сплайсинг - удаление неинформативных последовательностей мРНК, соответствующих интронам ДНК. В результате сплайсинга молекулярная масса мРНК уменьшается в 10 раз. Трансляция (от лат. translatio - перевод) - синтез полипептидной цепи с использованием мРНК в роли матрицы.

В трансляции участвуют все три типа РНК: мРНК является информационной матрицей; тРНК доставляют аминокислоты и узнают кодоны; рРНК вместе с белками образуют рибосомы, которые удерживают мРНК, тРНК и белок и осуществляют синтез полипептидной цепи.

Этапы трансляции

Этап Характеристика
Инициация Сборка комплекса, участвующего в синтезе полипептидной цепи. Малая субчастица рибосомы соединяется с инициаторной мет-трнк , а затем с мрн к, после чего происходит образование целой рибосомы, состоящей из малой и большой субчастиц.
Элонгация Удлинение полипептидной цепи. Рибосома перемещается вдоль мрнк , что сопровождается многократным повторением цикла присоединения очередной аминокислоты к растущей полипептидной цепи.
Терминация Завершение синтеза полипептидной молекулы. Рибосома достигает одного из трёх стоп-кодонов мрнк , а так как не существует трнк с антикодонами, комплементарными стоп-кодонам, синтез полипептидной цепи прекращается. Она высвобождается и отделяется от рибосомы. Рибосомные субчастицы диссоциируют, отделяются от мрнк и могут принять участие в синтезе следующей полипептидной цепи.

Реакции матричного синтеза. К реакциям матричного синтеза относятся

  • самоудвоение ДНК (репликация);
  • образование мРНК, тРНК и рРНК на молекуле ДНК (транскрипция);
  • биосинтез белка на мРНК (трансляция).

Все эти реакции объединяет то, что молекула ДНК в одном случае или молекула мРНК в другом выступают в роли матрицы, на которой происходит образование одинаковых молекул. Реакции матричного синтеза являются основой способности живых организмов к воспроизведению себе подобных.
Регуляция экспрессии генов . Тело многоклеточного организма построено из разнообразных клеточных типов. Они отличаются структурой и функциями, то есть дифференцированы. Различия проявляются в том, что помимо белков, необходимых любой клетке организма, клетки каждого типа синтезируют ещё и специализированные белки: в эпидермисе образуется кератин, в эритроцитах - гемоглобин и т. д. Клеточная дифференцировка обусловлена изменением набора экспрессируемых генов и не сопровождается какими-либо необратимыми изменениями в структуре самих последовательностей ДНК.

Работа всех систем в организме непрерывна. В нём постоянно протекают сложные химические реакции, обеспечивающие нормальную жизнедеятельность. Одним из самых важных процессов является обмен веществ и энергии, то есть метаболизм.

Именно благодаря ему, клетки сохраняют постоянство состава, растут, функционируют, а также обновляются. Процесс этот непростой и состоит из двух видов обмена - пластического и энергетического, которые, в свою очередь, имеют несколько стадий.

Вконтакте

В организме непрерывно происходит как расщепление сложных веществ на более простые, так и синтез необходимых соединений из различных элементов. В результате первого типа реакций, который называется энергетическим обменом, или катаболизмом, тело человека получает необходимую для нормального функционирования энергию. Но её часть расходуется на создание новых соединений, которые нужны для жизнедеятельности. Такой процесс носит название пластического обмена, или анаболизма.

Энергетический обмен

Катаболизм , называемый также диссимиляцией , происходит вплоть до того момента, пока все питательные вещества, поступившие в организм, не расщепятся до углекислого газа, воды или других простых соединений, которые уже нельзя использовать.

Этот процесс аналогичен горению, ведь в его результате выделяются те же вещества. Но он происходит с куда большей скоростью и не нуждается в высоких температурах. Кроме того, важным отличием является то, что энергия не переходит в тепловую, чтобы безвозвратно рассеяться, а запасается для дальнейших нужд организма. Это делает процесс невероятно эффективным и уникальным.

Распад веществ для получения организмом энергии - это то, что характеризует энергетический обмен в клетке. Происходит он в несколько стадий:

  • подготовительная;
  • неполная (анаэробное дыхание);
  • аэробное дыхание.

Каждая из этих стадий имеет свои особенности и играет важную роль в метаболизме в целом. Далее будет более подробно рассказано про каждую из них.

Подготовительный этап

Единственная из стадий, которая протекает в желудочно-кишечном тракте. Она заключается в пищеварении, то есть распаде сложных органических соединений на простые. Распад у сложных организмов осуществляется под действием пищеварительных ферментов, а у одноклеточных - с помощью лизосом. При этом белки распадаются на аминокислоты, жиры - на алифатические карбоновые кислоты и глицерин, углеводы - на сахариды, нуклеиновые кислоты - на нуклеотиды .

При всех этих процессах дополнительно выделяется энергия в виде тепла, но не в самых больших количествах. Далее процессы происходят на клеточном уровне.

Анаэробное дыхание

Эта стадия называется также гликолизом применительно к царству животных, или брожением , если имеются в виду растения и микроорганизмы. Весь процесс происходит в цитоплазме клеток за счёт работы ферментов.

Он продолжает предыдущую стадию тем, что из моносахарида, коим является глюкоза, выделяются ещё более простые вещества - спирт и углекислый газ, а также кислоты.

Этот вид обмена универсален для всех организмов и используется даже в повседневной жизни. Поскольку он протекает и в бактериях, его широко применяют в пищевой промышленности: дрожжи производят этиловый спирт, кисломолочные бактерии - молочную кислоту, а животные клетки - пировиноградную. В некоторых микроорганизмах выделяется ацетон и этановая кислота.

При этом также выделяется энергия, часть которой запасается в двух молекулах аденозинтрифосфата (АТФ), и некоторое количество рассеивается с выделением тепла. Но двух молекул АТФ недостаточно для полноценной работы организма, поэтому за анаэробным этапом последует кислородное расщепление.

Аэробное дыхание

Другие названия этого этапа - клеточное дыхание , или кислородное расщепление . Как видно из названия, процесс невозможен без кислорода, который выступает в роли окислителя продуктов распада глюкозы. Помимо кислорода, в работе участвует фосфорная кислота и аденозиндифосфат (АДФ). Под действием ферментов они без повышения температуры моментально сжигают органические вещества до углекислого газа и воды.

Благодаря окислению из одной молекулы вещества (образовавшиеся на предыдущем этапе молочная, пировиноградная кислоты и так далее) клетка получает 18 АТФ, каждая из которых служит мощным источником энергии. Этот этап происходит в митохондриях клетки и является самым важным во всём энергетическом обмене, так как обеспечивает клетку большим количеством АТФ.

Пластический обмен

Пластический обмен ещё называется анаболизмом, ассимиляцией и биосинтезом. Он является не менее важной составляющей метаболизма, ведь именно пластический обмен в клетке характеризуется синтезом новых веществ, что обеспечивает образование ферментов, гормонов, а также белков, липидов и других веществ, участвующих в построении клеток, межклеточного пространства и других составляющих организма. Так же, как и энергетический обмен, он является сложным и протекает во многих организмах. Далее будут приведены примеры и процессы пластического обмена.

  • , который свойственен растениям, а также некоторым бактериям. Они называются автотрофами, поскольку способны самостоятельно синтезировать необходимые для жизни органические вещества из неорганических соединений.
  • Хемосинтез протекает у бактерий, называемых хемотрофами. И они также могут обеспечивать себя необходимыми органическими соединениями. Для их жизнедеятельности не нужен кислород, они используют диоксид углерода.
  • Биосинтез белков осуществляется в живых организмах. К ним относятся и гетеротрофы, которые, в отличие от двух предыдущих упоминаемых форм, неспособны самостоятельно обеспечивать себя органическими веществами, а поэтому получают их с помощью других организмов.

Остановимся на этих процессах более подробно.

Процесс, без которого не была бы возможна жизнь на Земле. Многим формам жизни для дыхания нужен кислород взамен выдыхаемого ими в воздух углекислого газа. Этим важным веществом нас обеспечивают растения, в зелёных листьях которых содержатся хлоропласты. Их окружает пара мембран, поскольку внутри хлоропласта в цитоплазме содержатся ценные граны с собственными защитными оболочками. В этих стопках тилакоидов, в свою очередь, присутствует хлорофилл, отвечающий за цвет растения, но главное - делающий процесс фотосинтеза возможным.

Осуществляется он посредством соединения шести молекул углекислого газа с водой, в результате чего образуется глюкоза. Побочным продуктом реакции является жизненно необходимый кислород. Процесс возможен только на свету, при использовании солнечной энергии.

Хемосинтез

Хемосинтез протекает у микроорганизмов, также способных к самостоятельному преобразованию неорганических соединений в органические. К ним относятся:

Окисление углекислого газа происходит без участия кислорода, с использованием запасённой ранее энергии. Из диоксида углерода синтезируются органические вещества, необходимые для жизнедеятельности.

Биосинтез белков

Сложный процесс, направленный на разложение попадающих в организм белков на составляющие, из которых впоследствии синтезируются собственные уникальные белки. Состоит из двух стадий.

Транскрипция - процесс, состоящий из трёх этапов (образование транскрипта, процессинг, сплайсинг), которые происходят в ядре клетки. Они направлены на создание информационной РНК (иРНК) из ДНК. В результате новый полимер полностью копирует небольшой участок нити ДНК с той разницей, что тимину в нём эквивалентен урацил.

Трансляция - перенос информации с синтезированной на предыдущем этапе молекулы РНК на строящийся полипептид с указаниями о его будущей структуре. Процесс происходит на рибосомах, расположенных в цитоплазме клетки. Они имеют овальную форму и состоят из частей, которые могут соединяться только при наличии иРНК. Сам перенос информации осуществляется в несколько этапов.

Итак, все вещества, поступающие в живой организм, распределяются в нём так, чтобы приносить ему пользу. Сложные распадаются с выделением энергии, необходимой для дальнейшей жизнедеятельности (например, выполнение физической или умственной работы человеком), запасаемой в АТФ. А из простых веществ организм синтезирует новые соединения с использованием энергии, накопившейся в универсальном источнике - молекуле той самой АТФ. При этом энергия не расходуется безвозвратно - она запасается в новых соединениях.

Диссимиляция и ассимиляция в корне отличаются друг от друга, но при этом они неразрывно связаны. Ведь именно катаболизм даёт энергию, без которой невозможен анаболизм, то есть синтез необходимых организму веществ. Вот почему эти два процесса являются очень важными.

Все пищевые вещества обладают определенным запасом энергии.

Организм называют трансформатором энергии, так как в нем постоянно происходят специфические превращения питательных веществ,

приводящие к освобождению энергии и переходу ее из одного вида в другой. Соотношение между количеством энергии, получаемой с пищей, и количеством затрачиваемой энергии носит название энергетического баланса организма. Для его изучения необходимо определение энергетической ценности пищи.

Энергетическая ценность пищевых веществ не всегда совпадает с их физиологической ценностью, ибо последняя определяется способностью к усвоению. Пищевые вещества животного происхождения усваиваются лучше, чем растительного.

Методы определения энергетического обмена. Количество энергии, освобождающееся в организме, зависит от химических превращений веществ в нем, т.е. от обменных процессов. Отсюда следует, что количество теплоты, выделяемое организмом, может служить показателем обмена веществ. Определение количества тепла (количества калорий), выделенного организмом, дает всю сумму энергетических превращений в виде конечного теплового итога. Такой способ определения энергии носит название прямой калориметрии. Определение количества калорий методом прямой калориметрии производится с помощью калориметрической камеры, или калориметра. Однако этот метод определения энергетического баланса трудоемок.

Все эти определения можно провести гораздо проще, изучая газообмен. Определение количества энергии, выделенной организмом, с помощью изучения газообмена получило название непрямой калориметрии. Зная, что все количество энергии, выделяемой в организме, есть результат распада белков, жиров и углеводов; зная также, какое количество энергии выделяется при распаде этих веществ и какое количество их подверглось распаду за определенный промежуток времени, можно вычислить количество освобождающейся энергии. Для того чтобы определить, какие вещества подверглись в организме окислению - белки, жиры или углеводы, вычисляют дыхательный коэффициент , т.е. отношение объема выделенной углекислоты к объему поглощенного кислорода. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Для примера рассмотрим, каков будет дыхательный коэффициент при окислении глюкозы. Суммарная формула распада глюкозы

При окислении глюкозы число молекул образовавшегося С0 2 равно числу молекул поглощенного 0 2 . Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогадро). Следовательно, дыхательный коэффициент (отношение С0 2 / 0 2) при окислении глюкозы и других углеводов равен единице.

При окислении жиров и белковдыхательный коэффициент будет ниже единицы. При окислении жиров дыхательный коэффициент равен 0,7. Проиллюстрируем это на примере окисления трипальми- тина:

Отношение между объемами углекислого газа и кислорода составляет в данном случае Ю2С0 2 /1450 2 = 0,703.

Аналогичный расчет можно сделать и для белка; при его окислении в организме дыхательный коэффициент равен 0,8. При смешанной пище у человека дыхательный коэффициент обычно равен 0,85-0,89.

Зная величину дыхательного коэффициента, по таблицам можно определить тепловой эквивалент кислорода, т.е. количество освобождаемой энергии на каждый литр потребленного кислорода. Тепловой эквивалент кислорода неодинаков при разных значениях дыхательного коэффициента. Для определения количества потребленного кислорода и выделенного углекислого газа пользуются методом Дугласа - Холдейна. Испытуемый берет в рот мундштук, нос закрывает, и весь выдыхаемый за определенный промежуток времени воздух собирается в резиновый мешок. Объем выдыхаемого воздуха определяется с помощью газовых часов. Из мешка берут пробу воздуха и определяют в ней содержание кислорода и углекислого газа; вдыхаемый воздух содержит определенное их количество. По разности в процентах вычисляют количество потребленного кислорода, выделенного углекислого газа и дыхательный коэффициент. Затем находят соответствующий его величине тепловой эквивалент кислорода, который умножают на количество литров потребленного кислорода. При этом получают величину обмена за тот промежуток времени, в течение которого производилось определение газообмена. Затем переводят эту величину в сутки.

Основной и общий обмен веществ. Различают общий обмен веществ и обмен веществ при полном покое, который называют основным. Его определяют при следующих условиях:

  • в состоянии мышечного покоя (положение лежа с расслабленной мускулатурой), при отсутствии раздражений, вызывающих эмоциональное напряжение;
  • натощак, т.е. через 12-16 ч после приема пищи;
  • при внешней температуре «комфорта» (21-22 °С), не вызывающей ощущения холода и жары.

Испытуемого укладывают в постель и спустя 30 мин начинают определение газообмена. В этих условиях энергия тратится на работу сердца, дыхание, поддержание температуры тела и т.д. Но эти затраты невелики. Главные затраты при определении основного обмена связаны с химическими процессами, всегда имеющими место в клетках. Величина основного обмена составляет 4200-8400 кДж в сутки у мужчин и 4200-7140 кДж у женщин.

Обмен веществ может значительно изменяться при различных условиях. Например, интенсивность основного обмена во время сна уменьшается на 8-10% по сравнению с исследованием во время бодрствования. Во время работы, при мышечной нагрузке, наоборот, он значительно увеличивается. Увеличение объема тем значительней, чем интенсивнее мышечная нагрузка. В связи с этим работники различных профессий тратят неодинаковое количество энергии в сутки: от 2500 ккал/сут (работники преимущественно умственного труда) до 4500 ккал/сут (работники особо тяжелого физического труда).

Умственная работа вызывает повышение обмена веществ всего на 2-3%. Любые эмоциональные возбуждения неизбежно приводят к повышению обмена веществ. После приема пищи обмен возрастает на 10-40%. Влияние пищи на обмен веществ не зависит от деятельности ЖКТ, оно обусловлено специфическим действием пищи на обмен. В связи с этим и принято говорить о специфическом динамическом действии пищи на обмен, понимая под этим его увеличение после приема пищи.

Регуляция обмена энергии. Уровень энергетического обмена непосредственно зависит от физической активности, эмоционального напряжения, характера питания, степени напряжения терморегуляции и ряда других факторов.

Многочисленные данные свидетельствуют об условно-рефлекторном изменении потребления кислорода и энергообмена. Любой ранее индифферентный раздражитель, связанный по времени с мышечной деятельностью, может служить сигналом к увеличению обмена веществ и энергии. Так, у спортсмена в предстартовом состоянии резко увеличивается потребление кислорода, а следовательно, и энергообмен. Особую роль в обмене энергии играет гипоталамическая область мозга. Здесь формируются регуляторные влияния, которые реализуются вегетативными нервами или гуморальным звеном за счет увеличения секреции ряда гормонов. Особенно выраженно усиливают обмен энергии гормоны щитовидной железы - тироксин и трийодтиронин и гормоны мозгового вещества надпочечников - адреналин и норадреналин.

Совокупность реакций обмена веществ, протекающих в организме, называется метаболизмом .

Процессы синтеза специфических собственных веществ из более простых называется анаболизмом , или ассимиляцией , или пластическим обменом . В результате анаболизма образуются ферменты, вещества, из которых построены клеточные структуры, и т.п. Этот процесс, как правило, сопровождается большим потреблением энергии .

Эта энергия получается организмом в других реакциях, в которых более сложные вещества расщепляются до простых. Эти процессы называются катаболизмом , или диссимиляцией , или энергетическим обменом . Продуктами катаболизма у аэробных организмов являются СО 2 , Н 2 О, АТФ и

восстановленные переносчики водорода (НАД∙Н и НАДФ∙Н), которые принимают атомы водорода, отщепляемые от органических веществ в процессах окисления. Некоторые низкомолекулярные вещества, которые образуются в ходе катаболизма, в дальнейшем могут служить предшественниками необходимых клетке веществ (пересечение катаболизма и анаболизма).

Катаболизм и анаболизм тесно связаны: анаболизм использует энергию и восстановители, образующиеся в реакциях катаболизма, а катаболизм осуществляется под действием ферментов, образующихся в результате реакций анаболизма.

Как правило, катаболизм сопровождается окислением используемых веществ, а анаболизм - восстановлением.

пластический обмен (анаболизм) энергетический обмен (катаболизм)
синтез и накопление (ассимиляция) сложных веществ распад сложных веществ на простые (диссимиляция)
идет с затратой энергии (расходуется АТФ) выделяется энергия (синтезируется АТФ)
может быть источником органических веществ для энергетического обмена является источником энергии для пластического обмена

биосинтез белков, жиров, углеводов;

фотосинтез (синтез углеродов растениями и синезелеными водорослями);

хемосинтез

анаэробное дыхание (= гликолиз = брожение);

аэробное дыхание (окислительное фосфорилирование)

Реакции анаболизма у разных организмов могут иметь некоторые отличия (см. тему "Способы получения энергии живыми организмами").

АТФ - аденозинтрифосфат

В процессе катаболизма выделяется энергия в виде тепла и в виде АТФ.

АТФ - единый и универсальный источник энергообеспечения клетки.

АТФ нестабильна.

АТФ является "энергетической валютой", которую можно потратить на синтезы сложных веществ в реакциях анаболизма.

Гидролиз (распад) АТФ:

АТФ + $Н_{2}О$ = АДФ + $Н_{3}РО_{4}$ + 40 кДж/моль

Энергетический обмен

Живые организмы получают энергию в результате окисления органических соединений.

Окисление - процесс отдачи электронов.

Расход полученной энергии:

50% энергии выделяется в виде тепла в окружающую среду;

50% энергии идет на пластический обмен (синтез веществ).

В клетках растений :

крахмал → глюкоза → АТФ

В клетках животных :

гликоген → глюкоза → АТФ

Подготовительный этап

Ферментативное расщепление сложных органических веществ до простых в пищеварительной системе:

    белковые молекулы - до аминокислот

    липиды - до глицерина и жирных кислот

    углеводы - до глюкозы

Распад (гидролиз) высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом.

Вся высвобождающаяся при этом энергия рассеивается в виде тепла.

Простые вещества всасываются ворсинками тонкого кишечника:

    аминокислоты и глюкоза - в кровь;

    жирные кислоты и глицерин - в лимфу;

и переносятся к клеткам тканей организма.

Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению (гликолизу).

На подготовительном этапе может происходить гидролиз запасные вещества клеток: гликогена - у животных (и грибов) и крахмала - у растений. Гликоген и крахмал являются полисахаридами и распадаются на мономеры - молекулы глюкозы.

распад гликогена

Гликоген печени используется не столько для собственных нужд печени, сколько для поддержания постоянной концентрации глюкозы в крови, и, следовательно, обеспечивает поступление глюкозы в другие ткани.

Рис. Функции гликогена в печени и мышцах

Гликоген, запасенный в мышцах, не может распадаться до глюкозы из-за отсутствия фермент. Функция мышечного гликогена заключается в освобождении глюкозо-6-фосфата, потребляемого в самой мышце для окисления и использования энергии.

Распад гликогена до глюкозы или глюкозо-6-фосфата не требует энергии.

Гликолиз (анаэробный этап)

Гликолиз - расщепление глюкозы с помощью ферментов.

Идет в цитоплазме, без кислорода.

Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД+ (никотинамидадениндинуклеотид).

Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н2:

$С_{6}Н_{12}О_{6}$ + 2АДФ + 2$Н_{3}РО_{4}$ + 2$НАД^{+}$ → 2$С_{3}Н_{4}О_{3}$ + 2АТФ + 2$Н_{2}О$ + 2($НАДН+Н^{+}$).

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке:

если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

$С_{3}Н_{4}О_{3}$ → $СО_{2}$ + $СН_{3}СОН$,

$СН_{3}СОН$ + $НАДН+Н^{+}$ → $С_{2}Н_{5}ОН$ + $НАД^{+}$ .

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

$С_{3}Н_{4}О_{3}$ + $НАДН+Н^{+}$ → $С_{3}Н_{6}О_{3}$ + $НАД^{+}$.

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80кДж запасается в связях 2 молекул АТФ.

дыхание, или Окислительное фосфорилирование (аэробный этап)

Окислительное фосфорилирование - процесс синтеза АТФ с участием кислорода.

Идет на мембранах крист митохондрий в присутствии кислорода.

Пировиноградная кислота, образовавшаяся при бескислородном расщеплении глюкозы, окисляется до конечных продуктов СО2 и Н2О. Этот многоступенчатый ферментативный процесс называется циклом Кребса, или циклом трикарбоновых кислот.

В результате клеточного дыхания при распаде двух молекул пировиноградной кислоты синтезируются 36 молекул АТФ:

2$С_{3}Н_{4}О_{3}$ + 32$О_{2}$ + 36АДФ + 36$Н_{3}РО_{4}$ → 6$СО_{2}$ + 58$Н_{2}О$ + 36АТФ.

Кроме того, нужно помнить, что две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы.

Суммарная реакция расщепления глюкозы до углекислого газа и воды выглядит следующим образом:

$С_{6}Н_{12}О_{6}$ + 6$О_{2}$ + 38АДФ → 6$СО_{2}$ + 6$Н_{2}О$ + 38АТФ + Qт,

где Qт - тепловая энергия.

Таким образом при окислительном фосфорилировании образуется в 18 раз больше энергии (36 АТФ), чем при гликолизе (2 АТФ).

1. К реакциям пластического обмена в организме человека относят процесс

1) транспорта питательных веществ по пищеварительному каналу
2) выделения сальными железами кожного сала
3) синтеза белков в клетках печени
4) фильтрации плазмы крови в нефроне
2. Установите уровневую организацию строения слухового анализатора чело-
века, начиная с его периферического отдела − уха. В ответ запишите соот-
ветствующую последовательность цифр.
1) рецепторные волосковые клетки
2) улитка
3) внутреннее ухо
4) перепончатый лабиринт
5) кортиев орган
3. Вставьте в текст «Процессы, происходящие в толстом кишечнике человека»
пропущенные термины из предложенного перечня, используя для этого
цифровые обозначения. Запишите в текст цифры выбранных ответов, а затем
получившуюся последовательность цифр (по тексту) впишите в приведённую
ниже таблицу.
Процессы, происходящие в толстом кишечнике человека
В толстом кишечнике в кровь всасывается большое количество ________ (А).
Железы толстого кишечника вырабатывают много ________ (Б) и облегчают,
таким образом, продвижение и выведение непереваренных остатков пищи.
Бактерии толстого кишечника синтезируют некоторые ________ (В). Непере-
варенные остатки пищи попадают в ________ (Г) и удаляются из организма.
Перечень терминов
1) слизь
2) вода
3) глюкоза
4) фермент
5) витамин
6) прямая кишка
7) слепая кишка
8) поджелудочная железа
4. К реакциям энергетического обмена в организме человека относят процесс
1) синтеза белков в мышечных волокнах
2) переноса кровью питательных веществ по организму
3) окисления глюкозы в нейронах мозга
4) обратного всасывания первичной мочи в извитых канальцах почек
5. Почему врачи рекомендуют включать в рацион питания продукты, содержа-
щие йод?
1) йод влияет на изменение состава плазмы крови
2) йод нормализует деятельность щитовидной железы
3) йод предупреждает заболевание ангиной
4) йод способствует синтезу в организме витамина С
6. Во время тренировки спортсмена в первую очередь расходуются запасы
1) витаминов 2) белков 3) жиров 4) углеводов
7. Вред загара заключается в том, что
1) темнеет кожа
2) может возникнуть меланома
3) вырабатывается избыток витамина D
4) в расширяющиеся сосуды кожи оттекает большое количество крови
8. В каком отделе пищеварительного канала в основном происходит всасыва-
ние органических веществ пищи?
1) в ротовой полости 3) в толстом кишечнике
2) в желудке 4) в тонком кишечнике
9. Установите уровневую организацию строения зрительного анализатора чело-
века, начиная с его периферического отдела. В ответ запишите соответствую-
щую последовательность цифр.
1) глаз
2) сетчатка
3) глазное яблоко
4) колбочки
5) фоторецепторы

Ребят помогите!

Примером пластического обмена в организме человека является
1.Распад белков до аминокислот в пищеварительной системе
2.Синтез новых белков организма в клетках
3.Участие ферментов в химических реакциях,происходящих в кишечнике
4.Диффузия кислорода в альвеолах лёгких

1. Внутренней средой организма человека являются кровь,... и... жидкость, обеспечивающая клетки необходимыми... 2. Лимфа – прозрачная жидкость,

в которой много..., защищающих организм от... микроорганизмов, циркулирует по... сосудам, в ней отсутствуют эритроциты и...

3. Кровь – жидкость красного цвета, состоящая из клеток:..., лейкоцитов и..., и межклеточного вещества – ..., кровь осуществляет транспорт веществ, нейтрализацию ядовитых веществ, терморегуляцию, защиту от...

4. Плазма крови на 90 % состоит из..., а также из... и... веществ, принимает участие в транспорте веществ и... крови.

5. Эритроциты – красные клетки крови, не имеющие..., двояковогнутой формы, содержат особый белок – ..., легко соединяющийся с кислородом.

6... и... бесцветны, различной формы, легко проникают сквозь стенки капилляров, способны уничтожать болезнетворных микроорганизмов за счет реакции..., образуются в красном костном мозге, селезенке и... узлах.

7. Кровяные пластинки... – мелкие безъядерные образования, образующиеся в... костном мозге, основная функция которых – ... крови.

8. Свертывание крови – защитная реакция организма, суть которой сводится к тому, что при поражении кровеносных сосудов разрушаются... и выделяется фермент, под действием которого растворимый белок плазмы... превращается в нерастворимый..., нити которого образуют..., который закрывает рану.

9. При попадании инфекции в организм человека лимфоциты вырабатывают..., особые белковые соединения, которые обезвреживают болезнетворные... и...

10... – это невосприимчивость организма к инфекционным заболеваниям, бывает..., который вырабатывается после перенесения заболевания или передается по наследству, и..., возникает в результате введения готовых... или..., культуры ослабленных микроорганизмов.

11. В 1901 году... открыл существование четырех... крови, отличающихся по наличию в эритроцитах и плазме... и...

12. При переливании крови от донора к... необходимо учитывать группу крови и..., при несоблюдении этих правил наблюдается... эритроцитов, приводящая к гибели человека.

1....К механической функции костей скелета человека относят 1)участие в кроветворении 2)обмен солей 3)защиту внутренних

4)участие в иммунитете

В каком(-их) сосуде(-ах) давление крови наибольшее?
1)в капиллярах
2)в верхней полой вене
3)в нижней полой вене
4)в плечевой артерии

3...Биологическая роль дыхания в организме человека заключается в

1)диффузии кислорода из капилляров в тканевую жидкость и углекислого
газа в капилляры
2)осуществлении вдоха и выдоха
3)выделении энергии при окислении органических веществ в клетках
4)присоединении кислорода к молекулам гемоглобина

Какое органическое вещество образуется в организме человека в результате
протекания данной химической реакции?
глюкоза + кислород = углекислый газ + вода + ?
1)крахмал
2)АТФ
3)белок
4)ДНК

Что является примером врождённого рефлекса у человека?
1)движение пешехода на зелёный сигнал светофора
2)сужение зрачка при попадании в ярко освещённое помещение
3)выделение желудочного сока на запах пищи
4)возникновение обиды на отметку «2», поставленную педагогом

Нарушение целостности кожных покровов при работе на огороде опасно,
потому что
1)может прекратиться доступ воздуха к тканям
2)в рану могут проникнуть яйца глистов
3)нарушается процесс свёртывания крови
4)могут проникнуть возбудители столбняка

Для медведя абиотическим фактором является
1)высота снежного покрова
2)наличие в лесу старых деревьев с дуплами
3)урожай семян ели
4)численность лосей

Как получают энергию консументы (потребители)?
1)Они используют энергию солнца.
2)Они потребляют воду из почвы.
3)Они питаются растущими растениями.
4)Они минерализуют органические вещества

Дятел Кряква
Рябчик Цапля
Тетерев Выпь

Что из перечисленного ниже было положено в основу разделения
(классификации) этих животных в группы?
1)условия обитания
2)размер клюва
3)способность плавать
4)источник питания

Верны ли следующие суждения о свойствах мышечных тканей человека?
А. Основные свойства мышечной ткани – это возбудимость и проводимость.
Б. Стенки кровеносных сосудов, кишечника, мочевого пузыря образованы
поперечнополосатой мышечной тканью.
1)верно только А
2)верно только Б
3)верны оба суждения
4)оба суждения неверны