Природные источники энергии и их использование. Альтернативные виды топлива Как используют энергию природных источников

Люди используют различные виды энергии для всего, от собственных движений до отправки космонавтов в космос.

Существует два типа энергии:

  • способность совершить (потенциальная)
  • собственно работа (кинетическая)

Поставляется в различных формах:

  • тепла (тепловая)
  • свет (лучистая)
  • движение (кинетическая)
  • электрическая
  • химическая
  • ядерная энергия
  • гравитационная

Например пища, которую человек ест содержит химическую и тело человека хранит её пока он или она израсходует как кинетическую во время работы или жизни.

Классификация видов энергии

Люди используют ресурсы разных видов: электричество в своих домах, добываемое путем сжигания угля, ядерной реакции или ГЭС на реке. Таким образом, уголь, ядерная и гидро называются источником. Когда люди заполняют топливный бак бензином источником может быть нефть или даже выращивание и переработка зерна.

Источники энергии делятся на две группы :

  • Возобновляемые
  • Невозобновляемые

Возобновляемые и невозобновляемые источники можно использовать в качестве первичных для получения пользы, такого как тепло или использовать для производства вторичных энергетических источников, таких, как электричество.

Когда люди используют электричество в своих домах, электроэнергия вероятно создается сжиганием угля или природного газа, ядерной реакции или ГЭС на реке, или из нескольких источников. Люди используют для топлива своих автомобилей сырую нефть (невозобновляемая), но могут и биотопливо (возобновляемая) как этанол, который производится из переработанной кукурузы

Возобновляемые

Есть пять основных возобновляемых источников энергии:

  • Солнечная
  • Геотермальное тепло внутри Земли
  • Энергия ветра
  • Биомасса из растений
  • Гидроэнергетика из проточной воды

Биомасса, которая включает древесину, биотопливо и отходы биомассы, является крупнейшим источником возобновляемой энергии, на которую приходится около половины всех возобновляемых и около 5% от общего объема потребления.

Невозобновляемые

Большая часть ресурсов, потребляемых в настоящее время из невозобновляемых источников:

  • Нефтепродукты
  • Углеводородный сжиженный газ
  • Природный газ
  • Уголь
  • Ядерная энергия

На невозобновляемые виды энергии приходится около 90% всех используемых ресурсов.

Изменяется ли потребление топлива с течением времени

Источники потребляемой энергии с течением времени меняются, но изменения происходят медленно. Например, уголь когда-то широко использовался в качестве топлива для отопления домов и коммерческих зданий, однако конкретное использование угля для этих целей сократилось за последние полвека.

Хотя доля возобновляемого топлива от общего потребления первичной энергии еще относительно невелика, его использование растет во всех отраслях. Кроме того, использование природного газа в электроэнергетике возросло в последние годы из-за низких цен на природный газ, в то время как использование угля в этой системе сократилось.

Работа добавлена на сайт сайт: 2015-10-28

Узнай цену своей работы

Введение
Почему же именно сейчас, как никогда остро, встал вопрос: что ждет человечество - энергетический голод или энергетическое изобилие? Не сходят со страниц газет и журналов статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Если в конце прошлого века самая распространенная сейчас энергия - электрическая - играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. Вполне реален прогноз, по которому в 2000 году будет произведено 30 тысяч миллиардов киловатт-часов! Гигантские цифры, небывалые темпы роста! И все равно энергии будет мало, потребности в ней растут еще быстрее.

Так за чем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней.

Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях. Конечно, способы сжигания топлива стали намного сложнее и совершеннее.

Новые факторы - возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды- потребовали нового подхода к энергетике. К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны живут сегодняшним днем. Они нещадно расходуют подаренные им природой нефтяные запасы. Сейчас многие из этих стран, особенно в районе Персидского залива, буквально купаются в золоте, не задумываясь, что через несколько десятков лет эти запасы иссякнут. Что же произойдет тогда- а это рано или поздно случится, когда месторождения нефти и газа будут исчерпаны? Особенно призадумались тогда те страны, где нет собственных запасов нефти и газа и которым приходится их покупать.

А пока в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников, которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Решение этой задачи исследователи ищут на разных путях. Самым заманчивым, конечно, является использование вечных, возобновляемых источников энергии-энергии текущей воды и ветра, океанских приливов и отливов, тепла земных недр, солнца.


Виды энергии

В нашем индустриальном обществе от энергии зависит все. С ее помощью движутся автомобили, улетают в космос ракеты. С ее помощью можно поджарить хлеб, обогреть жилище и привести в действие кондиционеры, осветить улицы, вывести в море корабли.

Могут сказать, что энергией являются нефть и природный газ. Однако это не так. Чтобы освободить заключенную в них энергию, их необходимо сжечь, так же как бензин, уголь или дрова. Мир наполнен энергией, которая может быть использована для совершения работы разного характера. Энергия может находиться в людях и животных, в камнях и растениях, в ископаемом топливе, деревьях и воздухе, в реках и озерах. Однако самыми большими резервуарами накопленной энергии являются океаны - огромные пространства беспрерывно перемещающихся водных потоков, покрывающих около 71 % всей земной поверхности. Рассмотрим основные виды энергии, которые использует человек для своих нужд. На текущий момент это:

· Энергия солнца

· Ветровая энергия

· Энергия рек

· Энергия земли

· Энергия океана

· Атомная энергия

Рассмотрим их более подробно.

1.1 Энергия солнца

В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас рассмотреть его возможности отдельно.

Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики.

Заметим, что использование всего лишь 0.0125% этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5% - полностью покрыть потребности на перспективу

К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения. Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м2. Поэтому, чтобы коллекторы солнечного излучения "собирали" за год энергию, необходимую для удовлетворения всех потребностей человечества нужно разместить их на территории 130 000 км2 !

Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчетам изготовление коллекторов солнечного излучения площадью 1 км2, требует примерно 10^4 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1.17*10^9 тонн.

Из написанного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счет солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется "собирать" солнечную энергию на площади от 1*10^6 до 3*10^6 км2. В то же время общая площадь пахотных земель в мире составляет сегодня 13*10^6 км2.

Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт*год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.
1.2 Ветровая энергия.
Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Почему же столь обильный, доступный, да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

Техника 20 века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой получение электроэнергии. В начале века Н.Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания.

В наши дни к созданию конструкций ветроколеса сердца любой ветроэнергетической установки привлекаются специалисты самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.
1.3
Энергия рек

Многие тысячелетия верно служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода ведь около трех четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек.

Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье в виде водяной турбины. Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода, тем более что многовековой опыт у нее уже имелся.

Преимущества гидроэлектростанций очевидны постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое кол-во материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным.

Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное кол-во энергии.
1.4
Энергия земли

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов. Маленькая европейская страна Исландия "страна льда" в дословном переводе полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами-фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в использовании тепла подземных источников (еще древние римляне к знаменитым баням термам Каракаллы подвели воду из-под земли), жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно. Столица - Рейкьявик, в которой проживает половина населения страны, отапливается только за счет подземных источников.

Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло, названном так в честь французского инженера Лардерелли, который еще в 1827 году составил проект использования многочисленных в этом районе горячих источников. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, ив наши дни мощность станции достигла уже внушительной величины - 360 тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, ее мощность 160 тысяч киловатт. В 120 километрах от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч кило-

ватт.

1.5
Энергия мирового океана

Известно, что запасы энергии в Мировом океане колоссальны. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 10^26 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 10^18 Дж. Однако пока что люди умеют утилизовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Однако происходящее весьма быстрое истощение запасов ископаемых топлив (прежде всего нефти и газа), использование которых к тому же связано с существенным загрязнением окружающей среды (включая сюда также и тепловое "загрязнение", и грозящее климатическими последствиями повышение уровня атмосферной углекислоты), резкая ограниченность запасов урана (энергетическое использование которых к тому же порождает опасные радиоактивные отходы) и неопределенность как сроков, так и экологических последствий промышленного использования термоядерной энергии заставляет ученых и инженеров уделять все большее внимание поискам возможностей рентабельной утилизации обширных и безвредных источников энергии и не только перепадов уровня воды в реках, но и солнечного тепла, ветра и энергии в Мировом океане.

Наиболее очевидным способом использования океанской энергии представляется постройка приливных электростанций (ПЭС). С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВт*ч. Советский инженер Бернштейн разработал удобный способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. Его идеи проверены на ПЭС, построенной в 1968 году в Кислой Губе около Мурманска; своей очереди ждет ПЭС на 6 млн. кВт в Мезенском заливе на Баренцевом море.

Неожиданной возможностью океанской энергетики оказалось выращивание с плотов в океане быстрорастущих гигантских водорослей келп, легко перерабатываемых в метан для энергетической замены природного газа. По имеющимся оценкам, для полного обеспечения энергией каждого человека - потребителя достаточно одного гектара плантаций келпа.

Большое внимание приобрела "океанотермическая энергоконверсия" (ОТЭК), т.е. получение электроэнергии за счет разности температур между поверхностными и засасываемыми насосом глубинными океанскими водами, например при использовании в замкнутом цикле турбины таких легкоиспаряющихся жидкостей как пропан, фреон или аммоний. В какой-то мере аналогичными, но как пока кажется, вероятно, более далекими представляются перспективы получения электроэнергии за счет различия между соленой и пресной, например морской и речной водой.

Уже немало инженерного искусства вложено в макеты генераторов электроэнергии, работающих за счет морского волнения, причем обсуждаются перспективы электростанций с мощностями на многие тысячи киловатт. Еще больше сулят гигантские турбины на таких интенсивных и стабильных океанских течениях, как Гольфстрим.

Представляется, что некоторые из предлагавшихся океанских энергетических установок могут быть реализованы, и стать рентабельными уже в настоящее время. Вместе с тем следует ожидать, что творческий энтузиазм, искусство и изобретательность научно-инженерных работников улучшить существующие и создадут новые перспективы для промышленного использования энергетических ресурсов Мирового океана. Думается, что при современных темпах научно-технического прогресса существенные сдвиги в океанской энергетике должны произойти в ближайшие десятилетия.

Океан наполнен внеземной энергией, которая поступает в него из космоса. Она доступна и безопасна, и не загрязняет окружающую среду, неиссякаема и свободна.

Из космоса поступает энергия Солнца. Она нагревает воздух и образует ветры, вызывающие волны. Она нагревает океан, который накапливает тепловую энергию. Она приводит в движение течения, которые в то же время меняют свое направление под воздействием вращения Земли.

Из космоса же поступает энергия солнечного и лунного притяжения. Она является движущей силой системы Земля - Луна и вызывает приливы и отливы. Океан - это не плоское, безжизненное водное пространство, а огромная кладовая беспокойной энергии. Здесь плещут волны, рождаются приливы и отливы, пересекаются течения, и все это наполнено энергией. Бакены и маяки, использующие энергию волн, уже усеяли прибрежные воды Японии. В течение многих лет бакены – свистки береговой охраны США действуют благодаря волновым колебаниям.

Сегодня вряд ли существует прибрежный район, где не было бы своего собственного изобретателя, работающего над созданием устройства, использующего энергию волн.

Начиная с 1966 года два французских города полностью удовлетворяют свои потребности в электроэнергии за счет энергии приливов и отливов. Энергоустановка на реке Ранс (Бретань), состоящая из двадцати четырех реверсивных турбогенераторов, использует эту энергию. Выходная мощность установки 240 мегаватт - одна из наиболее мощных гидроэлектростанций во Франции.

В 70-х годах ситуация в энергетике изменилась. Каждый раз, когда поставщики на Ближнем Востоке, в Африке и Южной Америке поднимали цены на нефть, энергия приливов становилась все более привлекательной, так как она успешно конкурировала в цене с ископаемыми видами топлива.

Вскоре за этим в Советском Союзе, Южной Корее и Англии возрос интерес к очертаниям береговых линий и возможностям создания на них энергоустановок. В этих странах стали всерьез подумывать об использовании энергии приливов волн и выделять средства на научные исследования в этой области, планировать их.

Не так давно группа ученых океанологов обратила внимание на тот факт, что Гольфстрим несет свои воды вблизи берегов Флориды со скоростью 5 миль в час. Идея использовать этот поток теплой воды была весьма заманчивой. Возможно ли это? Смогут ли гигантские турбины и подводные пропеллеры, напоминающие ветряные мельницы, генерировать электричество, извлекая энергию из течений и воли? "Смогут" - таково в 1974 году было заключение Комитета Мак-Артура, находящегося под эгидой Национального управления по исследованию океана и атмосферы в Майами (Флорида).Общее мнение заключалось в том, что имеют место определенные проблемы, но все они могут быть решены в случае выделения ассигнований, так как "в этом проекте нет ничего такого, что превышало бы возможности современной инженерной и технологической мысли".

Один из ученых, наиболее склонный к прогнозам на будущее, предсказал, что электричество, полученное при использовании энергии Гольфстрима, может стать конкурентоспособным уже в 80-е годы.

В океане существует замечательная среда для поддержания жизни, в состав которой входят питательные вещества, соли и другие минералы. В этой среде растворенный в воде кислород питает всех морских животных от самых маленьких до самых больших, от амебы до акулы. Растворенный углекислый газ точно так же поддерживает жизнь всех морских растений от одноклеточных диатомовых водорослей до достигающих высоты 200-300 футов (60-90 метров) бурых водорослей. Морскому биологу нужно сделать лишь шаг вперед, чтобы перейти от восприятия океана как природной системы поддержания жизни к попытке начать на научной основе извлекать из этой системы энергию.

При поддержке военно-морского флота США в середине 70-х годов группа специалистов в области исследования океана, морских инженеров и водолазов создала первую в мире океанскую энергетическую ферму на глубине 40 футов (12 метров) под залитой солнцем гладью Тихого океана вблизи города Сан-Клемент. Ферма была небольшая. По сути своей, все это было лишь экспериментом. На ферме выращивались гигантские калифорнийские бурые водоросли.

По мнению директора проекта доктора Говарда А. Уилкокса, сотрудника Центра исследования морских и океанских систем в Сан-Диего (Калифорния), "до 50 % энергии этих водорослей может быть превращено в топливо - в природный газ метан. Океанские фермы будущего, выращивающие бурые водоросли на площади примерно 100 000 акров (40 000 га), смогут давать энергию, которой хватит, чтобы полностью удовлетворить потребности американского города с населением в 50 000 человек".

Океан всегда был богат энергией волн, приливов и течений. В древние времена, наблюдая движение водных потоков, рыбаки ничего не знали о "приливной энергии" или о "выращивании бурых водорослей", однако они знали, что выходить в море легче во время отлива, а возвращаться обратно - во время прилива. Им, конечно, было известно и о том, что иногда волны тяжело и страшно бьют о берег, выбрасывая камни на его скалы, и о "морских реках", которые всегда выносили их к нужным островам, и о том, что они всегда смогут прокормиться моллюсками, ракообразными, рыбой и съедобными водорослями, растущими в океане.В наши дни, когда возросла необходимость в новых видах топлива, океанографы, химики, физики, инженеры и технологи обращают все большее внимание на океан как на потенциальный источник энергии.

В океане растворено огромное количество солей. Может ли соленость быть использована, как источник энергии?

Может. Большая концентрация соли в океане навела ряд исследователей Скриппского океанографического института в Ла-Колла (Калифорния) и других центров на мысль о создании таких установок. Они считают, что для получения большого количества энергии вполне возможно сконструировать батареи, в которых происходили бы реакции между соленой и несоленой водой.

Температура воды океана в разных местах различна. Между тропиком Рака и тропиком Козерога поверхность воды нагревается до 82 градусов по Фаренгейту (27 C). На глубине в 2000 футов (600 метров) температура падает до 35,36,37 или 38 градусов по Фаренгейту (2-3.5 С). Возникает вопрос: есть ли возможность использовать разницу температур для получения энергии? Могла бы тепловая энергоустановка, плывущая под водой, производить электричество?

Да, и это возможно.

В далекие 20-е годы нашего столетия Жорж Клод, одаренный, решительный и весьма настойчивый французский физик, решил исследовать такую возможность. Выбрав участок океана вблизи берегов Кубы, он сумел-таки после серии неудачных попыток получить установку мощностью 22 киловатта. Это явилось большим научным достижением и приветствовалось многими учеными.

Используя теплую воду на поверхности и холодную на глубине и создав соответствующую технологию, мы располагаем всем необходимым для производства электроэнергии, уверяли сторонники использования тепловой энергии океана. "Согласно нашим оценкам, в этих поверхностных водах имеются запасы энергии, которые в 10 000 раз превышают общемировую потребность в ней".

"Увы, - возражали скептики, - Жорж Клод получил в заливе Матансас всего 22 киловатта электроэнергии. Дало ли это прибыль?" Не дало, так как, чтобы получить эти 22 киловатта, Клоду пришлось затратить 80 киловатт на работу своих насосов.

Сегодня профессор Скриппского института океанографии Джон Исаак сделает вычисления более аккуратно. По его оценкам, современная технология позволит создавать энергоустановки, использующие для производства электричества разницу температур в океане, которые производили бы его в два раза больше, чем общемировое потребление на сегодняшний день. Это будет электроэнергия, производимая электростанцией, преобразующей термальную энергию океана (ОТЕС).

Конечно, это - прогноз ободряющий, но даже если он оправдается, результаты не помогут разрешению мировых энергетических проблем. Разумеется, доступ к запасам электроэнергии ОТЕС предоставляет великолепные возможности, но (по крайней мере пока) электричество не поднимает в небо самолеты, не будет двигать легковые и грузовые автомобили и автобусы, не поведет корабли через моря.

Однако самолеты и легковые автомобили, автобусы и грузовики могут приводиться в движение газом, который можно извлекать из воды, а уж воды-то в морях достаточно. Этот газ - водород, и он может использоваться в качестве горючего. Водород - один из наиболее распространенных элементов во Вселенной. В океане он содержится в каждой капле воды. Помните формулу воды? Формула HOH значит, что молекула воды состоит из двух атомов водорода и одного атома кислорода. Извлеченный из воды водород можно сжигать как топливо и использовать не только для того, чтобы приводить в движение различные транспортные средства, но и для получения электроэнергии.

Все большее число химиков и инженеров с энтузиазмом относится к "водородной энергетике" будущего, так как полученный водород достаточно удобно хранить: в виде сжатого газа в танкерах или в сжиженном виде в криогенных контейнерах при температуре 423 градуса по Фаренгейту (-203 С). Его можно хранить и в твердом виде после соединения с железо-титановым сплавом или с магнием для образования металлических гидридов. После этого их можно легко транспортировать и использовать по мере необходимости.

Один из наиболее перспективных из них - электролиз воды. (Через воду пропускается электрический ток, в результате чего происходит химический распад. Освобождаются водород и кислород, а жидкость исчезает.)

В 60-е годы специалистам из НАСА удалось столь успешно осуществить процесс электролиза воды и столь эффективно собирать высвобождающийся водород, что получаемый таким образом водород использовался во время полетов по программе "Аполлон".

Таким образом, в океане, который составляет 71 процент поверхности планеты, потенциально имеются различные виды энергии - энергия волн и приливов; энергия химических связей газов, питательных веществ, солей и других минералов; скрытая энергия водорода, находящегося в молекулах воды; энергия течений, спокойно и нескончаемо движущихся в различных частях океана; удивительная по запасам энергия, которую можно получать, используя разницу температур воды океана на поверхности и в глубине, и их можно преобразовать в стандартные виды топлива.

Такие количества энергии, многообразие ее форм гарантируют, что в будущем человечество не будет испытывать в ней недостатка. В то же время не возникает необходимости зависеть от одного - двух основных источников энергии, какими, например, являются давно использующиеся ископаемые виды топлива и ядерного горючего, методы получения которого были разработаны недавно.

Более того, в миллионах прибрежных деревень и селений, не имеющих сейчас доступа к энергосистемам, будет тогда возможно улучшить жизненные условия людей. Жители тех мест, где на море бывает сильное волнение, смогут конструировать и использовать установки для преобразования энергии волн. Живущие вблизи узких прибрежных заливов, куда во время приливов с ревом врывается вода, смогут использовать эту энергию. Для всех остальных людей энергия океана в открытом водном пространстве будет преобразовываться в метан, водород или электричество, а затем передаваться на сушу по кабелю или на кораблях.

Разумеется, трудно даже представить себе переход от столь привычных, традиционных видов топлива - угля, нефти и природного газа - к незнакомым, альтернативным методам получения энергии.

Разница температур? Водород, металлические гидриды, энергетические фермы в океане? Для многих это звучит как научная фантастика.

И тем не менее несмотря на то что извлечение энергии океана находятся на стадии экспериментов и процесс ограничен и дорогостоящ, факт остается фактом, что по мере развития научно-технического прогресса энергия в будущем может в значительной степени добываться из моря. Когда - зависит от того, как скоро эти процессы станут достаточно дешевыми. В конечном итоге дело упирается не в возможность извлечения из океана энергии в различных формах, а в стоимость такого извлечения, которая определит, насколько быстро будет развиваться тот или иной способ добычи.

Когда бы это время ни наступило, переход к использованию энергии океана принесет двойную пользу: сэкономит общественные средства и сделает более жизнеспособной третью планету Солнечной системы - нашу Землю.

Впервые удар по общественному карману был нанесен в 1973 году подъемом цен на ископаемые виды топлива. Особенно возросли цены на нефть - основной вид топлива в XX веке, используемый в промышленности, сельском хозяйстве, для отопления. Вслед за этим произошло повышение уровня инфляции, а поскольку научные исследования и эксперименты тоже требуют ассигнований, поиски новых видов топлива подняли цены еще выше.

Ископаемые виды топлива истощаются, мы вынуждены их экономить и увеличивать энергообеспечение за счет строительства ядерных реакторов, которые требуют значительных финансовых затрат и вызывают опасения у людей, живущих вблизи. Конечно, энергопотребление снизится, если быть более экономными. В США, население которых составляет 5,3 % от общемирового и где используется 35 % всех видов ископаемого топлива и гидроэлектроэнергии мира, потребление энергии может быть легко снижено до 30 - 32 % , а то и до 25 %. Существует даже мнение, что по справедливости Соединенные Штаты должны снизить потребление энергии до 5,3 %.

Экономика, однако, лишь одна сторона дела. Другая сторона относится к странам развивающимся, которые стараются достичь уровня жизни промышленно развитых стран, определяющегося использованием большого количества энергии. Сегодня народы Азии, Африки и Латинской Америки стремятся перейти от общества, в котором используется в основном физический труд, к обществу с развитой индустрией.

Для того чтобы удовлетворить потребность в равноправном распределении дешевой энергии между всеми странами, потребуется такое ее количество, которое, возможно, в тысячи раз превысит сегодняшний уровень потребления, и биосфера уже не справится с загрязнением, вызываемым использованием обычных видов топлива. Тем не менее президент Института исследований в области электроэнергии в Пало Альто (Калифорния) Чонси Старр полагает: "Необходимо признать, что мировое потребление энергии будет развиваться именно в этом направлении и так быстро, как только позволят политические, экономические и технические факторы".

Так как соревнование за обладание истощающимися видами топлива обостряется, расход общественных средств будет расти. Рост этот продолжится, так как необходимо бороться с загрязнением воздуха и воды, теплотой, выделяющейся при сгорании ископаемых видов топлива.

Но стоит ли волноваться в поисках новых источников ископаемого топлива? Зачем дискутировать по вопросу о строительстве ядерных реакторов? Океан наполнен энергией, чистой, безопасной и неиссякаемой. Она там, в океане, только и ждет высвобождения. И это - преимущество номер один.

Второе преимущество заключается в том, что использование энергии океана позволит Земле быть в дальнейшем обитаемой планетой. А вот альтернативный вариант, предусматривающий увеличение использования органических и ядерных видов топлива, по мнению некоторых специалистов, может привести к катастрофе: в атмосферу станет выделяться слишком большое количество углекислого газа и теплоты, что грозит смертельной опасностью человечеству.

"Пустяки, - усмехаются скептики. - Мы постоянно совершенствуем воздушные фильтры и очистные сооружения. Еще год-два- и фабричные дымовые трубы будут выпускать практически чистый воздух. Разве мы не очищаем выхлопные газы автомобилей? Скоро вы вообще забудете, что такое пары двуокиси серы."

Тем не менее углекислый газ и теплота, выделяемые в атмосферу дымовыми трубами фабрик и других промышленных предприятий, а иногда и большими многоквартирными комплексами, которые используют ископаемые виды топлива, внушают большое беспокойство.

Но кто заметит, что в воздухе стало больше углекислого газа? Он бесцветен и не имеет запаха. Он пузырится в прохладительных напитках. А кто заметит постепенное, медленное повышение атмосферной температуры Земли на один, два или три градуса по Фаренгейту? Заметит планета, когда углекислый газ через некоторое время окутает ее подобно одеялу, которое перестанет пропускать избыточное тепло в космос.

Жак Кусто, пионер освоения и исследования океана, считает: "Когда концентрация углекислого газа достигнет определенного уровня, мы окажемся как будто в парнике". Это значит, что теплота, выделяемая Землей, будет задерживаться под слоем стратосферы. Накапливающееся тепло повысит общую температуру. А увеличение ее даже на один, два или три градуса по Фаренгейту приведет к таянию ледников. Миллионы тонн растаявшего льда поднимут уровень морей на 60 метров. Города на побережье и в долинах больших рек окажутся затопленными.

По данному вопросу, как и по многим другим, ученые разделились на два лагеря. В одном лагере считают, что утолщающееся одеяло углекислого газа вызовет повышение температуры и приведет к таянию ледников, то есть, по определению доктора Говарда Уилкокса, превратить Землю в парник. Сторонники другого лагеря полагают, что то же самое одеяло будет преграждать путь теплу, излучаемому солнцем, что станет причиной наступления новой эры оледенения.

Итак, что же человечество должно делать? Будем ли мы истощать остатки ископаемого топлива, строить все большее число ядерных реакторов, рискуя изменить температуру атмосферы, или же обратимся к океану - кладезю неиссякаемой энергии - и будем искать способ извлечения этой энергии для достижения наших целей - вот в чем заключается вопрос.

1.6 Атомная энергия.
Открытие излучения урана впоследствии стало ключом к энергетическим кладовым природы.

Главным, сразу же заинтересовавшим исследователей, был вопрос: откуда берется энергия лучей, испускаемых ураном, и почему уран всегда чуточку теплее окружающей среды? Под сомнение ставился либо закон сохранения энергии, либо утвержденный веками принцип неизменности атомов? Огромная научная смелость требовалась от ученых, которые перешагнули границы привычного, отказались от устоявшихся представлений.

Такими смельчаками оказались молодые ученые Эрнест Резерфорд и Фредерик Содди. Два года упорного труда по изучению радиоактивности привели их к революционному по тем временам выводу: атомы некоторых элементов подвержены распаду, сопровождающемуся излучением энергии в количествах, огромных по сравнению с энергией, освобождающейся при обычных молекулярных видоизменениях.

Невиданными темпами развивается сегодня атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт! Некоторые ученые высказывают мнение, что к 21 веку около половины всей электроэнергии в мире будет вырабатываться на атомных электростанциях.

В принципе энергетический ядерный реактор устроен довольно просто в нем, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распада атомов урана или другого ядерного топлива. На атомной электростанции нет громадного парового котла, состоящего из тысяч километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил относительно небольшой ядерный реактор.

Самый распространенный в настоящее время тип реактора водографитовый. Еще одна распространенная конструкция реакторов так называемые водо-водяные. В них вода не только отбирает тепло от твэлов, но и служит замедлителем нейтронов вместо графита. Конструкторы довели мощность таких реакторов до миллиона киловатт. Могучие энергетические агрегаты установлены на Запорожской, Балаковской и других атомных электростанциях. Вскоре реакторы такой конструкции, видимо, догонят по мощности и рекордсмена полуторамиллионик с Игналинской АЭС.

Но все-таки будущее ядерной энергетики, по-видимому, останется за третьим типом реакторов, принцип работы и конструкция которых предложены учеными, - реакторами на быстрых нейтронах. Их называют еще реакторами размножителями. Обычные реакторы используют замедленные нейтроны, которые вызывают цепную реакцию в довольно редком изотопе- уране-235, которого в природном уране всего около одного процента. Именно поэтому приходится строить огромные заводы, на которых буквально просеивают атомы урана, выбирая из них атомы лишь одного сорта урана-235. Остальной уран в обычных реакторах использоваться не может. Возникает вопрос: а хватит ли этого редкого изотопа урана на сколько-нибудь продолжительное время или же человечество вновь столкнется с проблемой нехватки энергетических ресурсов?

Более тридцати лет назад эта проблема была поставлена перед коллективом лаборатории Физико-энергетического института. Она была решена. Руководителем лаборатории Александром Ильичом Лейпунским была предложена конструкция реактора на быстрых нейтронах. В 1955 году была построена первая такая установка.

Преимущества реакторов на быстрых нейтронах очевидны. В них для получения энергии можно использовать все запасы при- родных урана и тория, а они огромны только в Мировом океане растворено более четырех миллиардов тонн урана.

Но все 400 атомных электростанции, работающих сейчас на планете, не могут создать угрозу, хотя бы сравнимую с угрозой, исходящей от 50 тысяч боеголовок.

Нет сомнения в том, что атомная энергетика заняла прочное место в энергетическом балансе человечества. Она безусловно будет развиваться и впредь, без отказано поставляя столь необходимую людям энергию. Однако понадобятся дополнительные меры по обеспечению надежности атомных электростанций, их безаварийной работы, а ученые и инженеры сумеют найти необходимые решения.



Заключение.
За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан. Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного "корма". Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти. И вот новый виток:в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже.

Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники. Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.

В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков. Но времена изменились. Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика "щадящая". Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы.

Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.

Яркий пример тому быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная.

Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со Всем, и Все тянется к энергетике, зависит от нее.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, "черных дырах", вакууме, - это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и экономичные методы. Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве, и себестоимости. Нам, по-видимому. следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: "Нет простых решений,есть только разумный выбор".

Подобные документы

    Перспективные типы двигателей внутреннего сгорания, их экономичность; альтернативные виды топлива для ДВС. Изменение процессов подачи топлива, применение присадок; фильтры и катализаторы выхлопных газов. Системы локальной очистки воздуха над магистралями.

    реферат , добавлен 05.08.2013

    Природные ресурсы, их рациональное использование и воспроизводство. Экономическое регулирование охраны окружающей среды. Основные виды используемой человеком энергии. Энергия термоядерного синтеза, способы ее получения. Альтернативные источники энергии.

    контрольная работа , добавлен 30.04.2009

    Основные выбросы, загрязняющие воздух. Механизмы эмиссии автотранспорта и распространения выбросов. Технические и организационные меры по снижению загрязнения воздуха выбросами автотранспорта. Альтернативные виды энергии и сравнение видов топлива.

    реферат , добавлен 25.06.2009

    Причины образования токсичных компонентов в отработанных газах ДВС. Описание альтернативных экологичных видов топлива для автомобилей: добавки водорода и водородсодержащих топлив, синтетическое жидкое топливо. Анализ эффективности двигателя на водороде.

    реферат , добавлен 11.01.2010

    Использование ветра и ветряных установок. Сооружение гигантских ветроэнергетических установок для получения энергии. Способы преобразования солнечных лучей в электрический ток. Использование и получение энергии приливных и отливных морских течений.

    реферат , добавлен 09.11.2008

    Понятие "полностью безотходная технология". Рекомендации по созданию малоотходных и ресурсосберегающих технологий. Огневые методы очистки. Химические загрязнения, основные способы уменьшения вреда от них. Альтернативные способы получения энергии.

    реферат , добавлен 16.02.2016

    Характеристика природных водных ресурсов: их состав и элементы, общая характеристика источников водоснабжения (поверхностные и подземные). Оценка природных вод как возможных источников водоснабжения, принципы и обоснование их выбора, требования.

    контрольная работа , добавлен 26.08.2013

    Мониторинг атмосферного воздуха в местах скопления автотранспорта. Необходимость совершенствования двигателя внутреннего сгорания для уменьшения выбросов. Альтернативные виды топлива. Автоматизированные системы управления городским транспортом.

    дипломная работа , добавлен 04.12.2010

    Влияние транспорта на окружающую среду. Устройство поршневых двигателей внутреннего сгорания, принцип их работы. Причины загрязнения воздуха отработавшими газами автомобилей. Альтернативные виды топлива. Защита окружающей среды, меры предосторожности.

    реферат , добавлен 11.12.2012

    Состав и структура экологической системы. Биотический круговорот веществ и энергия в экологической системе. Перенос веществ и энергии в природных экосистемах. Пример наземной экосистемы дубравы. Экологическая система в виде диаграммы потока энергии.






















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

В настоящее время проблема охраны природы и рационального использования её ресурсов приобрела огромное мировое значение. Человек осознает, что настало время позаботиться и о природе: она не может всё время отдавать, она не способна вынести нагрузки, которые от неё требует человек.

Ознакомимся с различными видами получения энергии и экспериментально исследуем два вида чистых источников энергии на моделях ветроэнергетической установки и солнечной электростанции.

1. Экологические проблемы источников энергии

На уроках географии мы получаем знания о природных ресурсах, условиях их залегания и методах добычи. Так же мы узнаем о том, какие страны обладают ими в полной мере, а какие зависят от поставок из-за рубежа. На уроках физики мы изучаем возможности получения различных видов энергии и превращения одного вида энергии в другой. Биология дает нам знания о том, как влияет окружающий мир на живые организмы, и, в частности на человека. Но человек, своей деятельностью меняет мир природы, и не в лучшую сторону.

Загрязнения, выбросы твердых веществ, двуокиси серы, оксидом углерода, азота, углеводородов от промышленных предприятий составляют около 97% суммарных выбросов. Происходит загрязнение водных ресурсов сточными водами, загрязнение атмосферы в результате выделения пыли и газообразных веществ. При сжигании органического топлива вся его масса превращается в отходы, причем продукты сгорания в несколько раз превышают массу использованного топлива за счет включения кислорода и азота воздуха (Рисунок 1).

Происходят многие существенные изменения в ландшафтах. При добывании ископаемых создаются огромные насыпи пустой породы (Рисунок 2). Они отрицательно влияют на водный режим окружающих земель в радиусе нескольких десятках километров: сохнут колодцы, скудеет растительность при формировании отвалов пород.

Всё, что перечислено, явно указывает на то, что переход на возобновляемые источники энергии неизбежен.

1.1.Возобновляемые источники энергии.

Возобновляемые ресурсы - природные ресурсы, запасы которых или восстанавливаются быстрее, чем используются, или не зависят от того, используются они или нет.

В современной мировой практике к возобновляемым источникам энергии (ВИЭ) относят водную, солнечную, ветровую, геотермальную, гидравлическую энергии; энергию морских течений, энергию волн, приливов, температурного градиента морской воды, разности температур между воздушной массой и океаном, энергию тепла Земли, энергию биомассы животного, растительного и бытового происхождения.

1.2.Невозобновляемые источники энергии.

Это источники энергии, которые используют природные ресурсы земли, в результате чего их запасы не восполняются. По прогнозам специалистов, даже при самом оптимистическом подходе, запасы наиболее удобных для использования и относительно недорогих видов топлива – нефти и газа при современных темпах их потребления будут в основном использованы через 30-50 лет. Кроме того эти ресурсы являются основным сырьем для химической промышленности, сжигая их мы на самом деле сжигаем огромное количество изделий из синтетических материалов.

Примеры невозобновляемых ресурсов: нефть, уголь, природный газ, торф, гидраты метана, руды металлов, лес.

Путь сжигания невозобновляемых запасов топлива отрицательно воздействует на окружающую среду. Нефть, разливаясь из танкеров, терпящих бедствие, губит мировой океан. добыча, и транспортировка, и переработка нефти сопряжена с вредными воздействиями на окружающую среду. Часто происходят разливы нефти в результате ее утечки из скважин или при транспортировке. Мы видим, какой вред наносят природе аварии нефтяных танкеров.

Гибнут рыбы и птицы, живущие на побережьях. Разливы нефти близко от берегов особенно вредны для морских птиц, икры и мальков рыб, обитающих около поверхности в прибрежных водах.

Горят нефтяные вышки, загрязняя атмосферу. При сжигании нефтепродуктов при переработке в атмосферу выбрасывается большое количество углекислого газа.

2. Возобновляемые источники энергии

2.1.Энергия ветра.

1) Использование.

Энергия ветра впервые использовалась на парусных судах, позже появились ветряные мельницы (Рисунок 3). Потенциал энергии ветра подсчитан более менее точно: по оценке Всемирной метеорологической организации ее запасы в мире составляют 170 трлн. кВт·ч в год. Ветроэнергоустановки разработаны и опробованы настолько основательно, что вполне прозаической выглядит картина сегодняшнего небольшого ветряка, снабжающего дом энергией вместе с фермой. Главным фактором использования ВЭУ является то, что это экологически чистый источник и он не требует затрат на защиту от загрязнения окружающей среды.

У энергии ветра есть несколько существенных недостатков. Она сильно рассеяна в пространстве, поэтому необходимы ветроэнергоустановки (ВЭУ), способные постоянно работать с высоким КПД. Ветер очень непредсказуем - часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки. Ветроэнергостанции не безвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями. Но, эти недостатки можно уменьшить, а то и вовсе свести их на нет. В настоящее время ветроэнергоустановки (ВЭУ) способны эффективно работать при самом слабом ветре. Шаг лопасти винта автоматически регулируется таким образом, чтобы постоянно обеспечивалось максимально возможное использование энергии ветра, а при слишком большой скорости ветра лопасть столь же автоматически переводится во флюгерное положение, так что авария исключается.

Разработаны и действуют так называемые циклонные электростанции мощностью до ста тысяч киловатт, где теплый воздух, поднимаясь в специальной 15-метровой башне и смешиваясь с циркулирующим воздушным потоком, создает искусственный “циклон”, который вращает турбину. Такие установки намного эффективнее и солнечных батарей и обычных ветряков. Энергию ветра уже используют для зарядки мобильных телефонов (Рисунок 4).

Чтобы компенсировать изменчивость ветра, сооружают огромные “ветряные фермы”. Ветряки при этом стоят рядами на обширном пространстве. Такие “фермы” есть в США, во Франции, в Англии, но они занимают много места; в Дании “ветряную ферму” разместили на прибрежном мелководье Северного моря, где ветер устойчивее, чем на суше (Рисунок 5).

Выработка электроэнергии с помощью ветра имеет ряд преимуществ:

а) экологически чистое производство без вредных отходов;

б) экономия дефицитного дорогостоящего топлива (традиционного и для атомных станций);

в) доступность;

г) практическая неисчерпаемость.

Места установки ВЭУ: на полях, где хорошие розы ветров, на морях, где преобладает разность давлений и создаются воздушные течения.

Эффективность ВЭУ зависит от режима и длительности работы, сезонной периодичности, от скорости и направления ветра.

Это мы проверим на экспериментальной установке.

2) Экспериментальная модель ВЭУ.

Она состоит из двух вентиляторов. Один из них имитирует ветер, а другой представляет собой работающую ВЭУ (Рисунок 6). Наша ВЭУ соединена через компьютер с преобразователем энергии ветра в электрическую энергию, в механическую энергию, энергию радиотелефонной связи колебательного контура приемника. На панели установки находится тумблер, переключающий все эти функции.

а) Первый эксперимент заключается в следующем: мы с помощью вентилятора-имитатора задаем силу ветра приближая и удаляя его от вентилятора, представляющего ВЭУ. На компьютере мы получаем таблицу зависимости мощности ветра и получаемого напряжения электрического тока.

По результатам эксперимента получили график зависимость мощности энергии вырабатываемой ВЭУ от силы ветра:

Мы установили, что потенциально энергетически выгодной является установка ВЭУ в таких местах, где среднегодовые скорости ветра превышают определенную величину и имеют часто повторяющуюся величину скоростей в диапазоне от 4 м/с до 9 м/с.

б) Для более полного использования энергии ветровое колесо должно занимать определенное положение относительно ветрового потока, ветровые двигатели многих типов оборудуют системами автоматической ориентации, чтобы плоскость вращения колеса была перпендикулярна направлению скорости ветра.

В эксперименте изменяли угол направления ветра, смещая вентилятор-имитатор под углом к ВЭУ. При этом на компьютере мы получаем таблицу мощности вырабатываемой энергии от угла поворота вентилятора-имитатора.

По результатам эксперимента получаем график зависимости мощности вырабатываемой ВЭУ энергии от угла направления ветра.

в) Еще одна возможность эксперимента заключалась в запасании энергии полученной от ВЭУ в аккумуляторах. Для этого на установке есть тумблер по переключению подачи энергии и аккумуляторы.

Это актуально в связи с перерывами в работе ВЭУ из-за отсутствия ветра или понижения силы ветра, и для потребителя является приемлемым возможность периодического использования энергии ветра, переработанного и запасенного заранее в периоды работы ВЭУ.

Фото 1. (Механизм подъема грузов)

Так же установка позволяет рассмотреть преобразование энергии, полученной ВЭУ, в электрическую, механическую и энергию радиотелефонной связи колебательного контура приемника. Для этого на панели установки есть тумблер, подключающий поочередно механизм для подъема грузов разной массы, радиоприемник и датчики света.

Фото 2. (Работа радиостанции)

Энергия ветра преобразуется в механическую энергию.

При хорошей мощности ветра можно поймать различные радиостанции.

Датчики света показывают зависимость напряжения от мощности ветра. Сегодня ветровая установка представляет собой ветряное колесо, устанавливаемое достаточно высоко (50-100 метров) над землей, так как скорость ветра возрастает с высотой. Диаметр ветряного колеса в проектных разработках в различных странах составляет 30-100 метров. Такие большие размеры связаны с желанием получить большую мощность одного агрегата, так как стоимость электроэнергии уменьшается с ростом мощности.

2.2.Энергия солнца.

1) Использование.

Солнечная энергия является экологически чистой энергией. Эксперты утверждают, что станция может производить достаточно энергии для снабжения 8 тысяч жилищ. Ряды вырабатывающих электроэнергию солнечных панелей занимают площадь около 60 га в самой солнечной европейской долине на юге Португалии.

Солнечные батареи просты и удобны в использовании, их можно устанавливать где угодно: на крышах и стенах жилых и производственных помещений, на специально оборудованных открытых площадках в регионах с большим числом солнечных дней (например, в пустынях) и даже вшивать в одежду (Рисунок 7).

Испанская компания Sun Red разработала проект мотоцикла, использующего для передвижения энергию Солнца. Поскольку пространства для размещения солнечных батарей на двухколесной машине немного, в Sun Red предусмотрели раздвижной кожух из фотоэлементов, закрывающий водителя (Рисунок 8).

Существуют самолеты, например именуемый Solar Impulse, создателем которого является Бертранд Пиккард, которые летают исключительно за счет солнечной энергии (Рисунок 9).

2) Экспериментальная модель солнечной станции (СЭС).

Она состоит из фотоэлемента, который освещается лампой имитирующей солнце. Фотоэлемент имитирует работу Солнечной электростанции (СЭС). Все данные моделируем с помощью компьютер (Рисунок 10) а, так же как и для ВЭУ.

Мы изучили три зависимости и получили следующие результаты.

а) Мощность вырабатываемой энергии зависит СЭС от времени суток. Угол положение лампы можно менять, тем самым, имитируя изменение времени суток.

График зависимости:

б) Мощность вырабатываемой энергии СЭС зависит от широты местности. Изменяя расстояние до фотоэлемента, мы как бы измененяем широту местности, где находится СЭС.

График зависимости:

в) Мощность вырабатываемой энергии СЭС зависит от времени года. Изменяя яркость лампы, мы как бы изменяем время года.

График зависимости.

Так же как для ВЗУ, энергия солнца может запасаться в аккумуляторах и использоваться для разных целей. Солнечная энергия преобразуется в механическую энергию для подъёма грузов, в электроэнергию для работы электрических приборов. Также можно преобразовать энергию для работы радио. В нашем эксперименте приемник ловит частоты радиостанций.

3) Проблемы применения фотоэлементов.

Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т.д., а их производство потребляет массу других опасных веществ. Современные фотоэлементы имеют ограниченный срок службы (30-50 лет), и массовое применение поставит в ближайшее же время сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения. Однако, в последнее время начинает активно развиваться производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния. Поэтому тонкоплёночные фотоэлементы дешевле в производстве, более экологичны, но пока имеют меньшее распространение.

3. Профессии, связанные с использование чистых источников энергии

Современному человеку за жизнь придется много раз менять виды деятельности, осваивать новые профессии, поэтому ему необходимо сориентироваться в многообразии профессий.

Профессии рассматриваются на четырех этапах, связанных с реализацией станции:

- проектирование (инженер-электромеханик, авиационный инженер, инженер-геодезист);

- установка (техник по установке, электротехник, вышкомонтажник) (Рисунок 11);

- техническое обслуживание (диспетчер энергосистемы);

- эксплуатация станций (техник по эксплуатации).

3.1. Проектирование:

а) Инженер-электромеханик.

Высококвалифицированный специалист, обладающий глубокими знаниями по теоретической электронике, теории автоматического регулирования, промышленной электронике и вычислительной технике, умеет разбираться в сложнейших чертежах и схемах (Рисунок 12).

б) Инженер-геодезист.

Инженер-геодезист занимается составлением карт и планов местности. Он настраивает геодезические приборы, обрабатывает результаты съемки, производит необходимые вычисления, определяет место установки ВЭУ и солнечных станций.

3.2. Техническое обслуживание:

Диспетчер энергосистемы.

Диспетчер энергосистемы обеспечивает безаварийную работу энергосистемы, наблюдает за панелью, отражающей работу системы и сохраняет готовность к устранению возможных аварий (Рисунок 13).

3.3. Эксплуатация электростанций.

Техник по эксплуатации.

Техник по эксплуатации определяет потенциальные возможности эксплуатации ВЭУ, ветровой режим хозяйственно-экономические условия эксплуатации, эффективность ветряного двигателя.

4. Вывод

Человечеству необходимо уже сейчас, не растратив природных богатств, перейти на чистые источники энергии. Их надо рассматривать не с точки зрения конкурентной способности по сравнению с традиционными способами энергетики, а отвести роль важного, иногда вспомогательного направления, способного эффективно дополнять уже используемые энергетические средства и заменять их.

5. Список используемой литературы

1. М.А.Станкович, Э.Э.Шпильрейн. “Энергетика. Проблемы и перспективы”. Издательство. Москва, Энергия, 1981.

2. Б.М Берковский, В.А.Кузьминов. “Возобновляемые источники на службе у человечества” М: Изд-во "Мир". 1976. 295 с.

3. Глобальная энергетическая проблема / Под общ. ред. И.Д. Иванова.- М.: Мысль, 198.

4. Краффт А.Эрике. Будущее космической индустрии М.: Машиностроение.1979 г.

5. Дж.Твайделл, А.Уэйр. “Возобновляемые источники энергии”. Издательство: М.: Энергоатомиздат, год: 1990.

6. Б.Бринкворт “Солнечная энергия для космоса”.

7. Я.И. Шефтер “Использование энергия ветра”. М.: Энергоатомиздат, 1983 г.

8. Энциклопедический словарь А.Б. Мигдала. София: Наука и изкуство, 1990.

Интернет ресурсы:

http://revolution.allbest.ru/physics/00016158_0.html

http://revolution.allbest.ru/ecology/00005949_0.html

http://fueloff.narod.ru/wind/dop1.htm

Муниципальное образовательное учреждение

Районный День науки

Использование природных ресурсов. Нетрадиционные возобновляемые

источники энергии

Информативно-реферативная исследовательская

работа по физике

Выполнила:

Денисова Влада Руслановна,

обучающаяся 9 класса

Руководитель:

Орлова Елена Александровна, учитель 1

квалификационной

д. Плоское

2011

Введение ……………………………………………………………………

Глава I . Природные ресурсы ………………………………………………

1.1. Полезные ископаемые ………………………………………………...

1.2. Использование природных ресурсов в д. Плоское

Починковского района ……………………………………………......

Глава 2. Нетрадиционные возобновляемые источники энергии ………

2.1. Энергия Солнца ……………………………………………………….

2.2. Энергия ветра ………………………………………………………….

2.3. Геотермальная энергия ………………………………………………..

2.4. Энергия внутренних вод ……………………………………………...

2.5. Энергия Мирового океана …………………………………………….

2.6. Энергия биомассы …………………………………………………….

д. Плоское Починковского района ……………………………...

Заключение …………………………………………………………………

Список использованной литературы ……………………………………..

Введение

Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество – энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе.

Если в конце прошлого века энергия играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. Вполне реален прогноз, по которому в 2010 году будет произведено 35 тысяч миллиардов киловатт-часов! Гигантские цифры, огромные темпы роста! И все равно энергии будет мало – потребности в ней растут еще быстрее.

Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека все время растут, да и людей становится все больше. Так зачем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм .

Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях.

Правда, способы сжигания топлива стали намного сложнее и совершеннее. Возросшие требования к защите окружающей среды потребовали нового подхода к энергетике.

К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств . Ведь лишь при этом условии запасов топлива может хватить на века. Что же произойдет тогда, а это рано или поздно случится, когда месторождения нефти и газа будут исчерпаны? Вероятность скорого истощения мировых запасов топлива, а также ухудшение экологической ситуации в мире, (переработка нефти и довольно частые аварии во время ее транспортировки представляют реальную угрозу для окружающей среды) заставили задуматься о других видах топлива, способных заменить нефть и газ.

Сейчас в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Нетрадиционные возобновляемые источники энергии включают солнечную, ветровую, геотермальную энергию, биомассу и энергию Мирового океана.

Актуальность данной проблемы определила цель исследования : рассмотреть роль нетрадиционно возобновляемых источников энергии и их влияние на экономическое использование природных ресурсов нашей местности .

Задачи:

1. Изучить материал о роли нетрадиционно возобновляемых источников энергии;

2. Исследовать использование природных ресурсов населенного пункта;

3. Провести некоторые расчеты эффективного использования нетрадиционно возобновляемых источников энергии;

4. Проанализировать полученную информацию, сделать выводы о роли нетрадиционно возобновляемых источников энергии и их влияние на экономическое использование природных ресурсов нашей местности.

Методы исследования: изучение литературных и других информационных источников, проведение рассчетов, анализ информации и результатов.

Глава I . Природные ресурсы

Природные ресурсы (естественные ресурсы), компоненты природы, которые на данном уровне развития производительных сил используются или могут быть использованы в качестве средств производства и предметов потребления. Использование природных ресурсов имеет тенденцию к постоянному расширению и смене приоритетов. Главные виды природных ресурсов можно классифицировать: на основе их генезиса – минеральные ресурсы, биологические ресурсы (растительный и животный мир), земельные, климатические, водные ресурсы; по способу использования – в материальном производстве (в промышленности, сельском хозяйстве и других отраслях), в непроизводственной сфере; по исчерпаемости – исчерпаемые, в том числе возобновимые (биологические, земельные, водные и др.) и невозобновимые (минеральные), практически неисчерпаемые (солнечная энергия, внутриземное тепло, энергия текучей воды). Огромные объёмы природных ресурсов, вовлечённых в современную человеческую деятельность, обострили проблемы их рационального использования и охраны и приобрели глобальный характер .

1.1. Полезные ископаемые

Полезные ископаемые – это минеральные образования земной коры, химический состав и физические свойства которых позволяют эффективно использовать их в сфере материального производства. Делятся на твёрдые (угли, руды), жидкие (нефть, минеральные воды), газообразные (природные горючие и инертные газы).

Недра нашей страны богаты различными полезными ископаемыми. Скопления полезных ископаемых образуют месторождения, а при больших площадях распространения бассейны.

Полезные ископаемые могут эффективно использоваться в хозяйстве.

Обозначения полезных ископаемых указаны на рисунке 1.

Рис. 1. Минеральные ресурсы и их обозначение

Сравним карты полезных ископаемых различных лет (см. рис. 2, 3).


Рис. 2. Карта полезных ископаемых 1985г.


Рис. 3. Карта полезных ископаемых 2008г.

Из данных карт видно, что, например, добыча угля с 1985 по 2008г.г. снизилась на 131 млн. тон .


Рис. 4. География угольной промышленности России (цифрами обозначены млн. тон)

Также снизилась добыча нефти, газа, различных видов руд, золота и других полезных ископаемых.

1.2. Использование природных ресурсов в д. Плоское Починковского района

В деревне Плоское Починковского района проживает 1221 человек.


Рис. 5. Внешний вид д. Плоское

Проживает население в домах частного сектора, благоустроенных квартирах, коттеджах, неблагоустроенных домах. В деревне есть двухэтажная школа, рассчитанная на 320 человек, двухэтажный детский сад рассчитанный на 120 детей, музыкальная школа, дом культуры, рассчитанный на 300 посадочных мест, сеть магазинов, контора АПЖС (агропромышленный животноводческий союз), контора ЖКХ (жилищно-коммунального хозяйства), баня, почта, филиал сбербанка, сельская администрация, ФАП (фельшерско-аккушерский пункт), котельная и другие учреждения.

Построено три пятиэтажных дома, два трёхэтажных, двадцать один двухэтажных домов, четыре коттеджа.

Уголь. Древесина

С 1979 года в деревне проведён природный газ. Дома частного сектора и неблагоустроенные квартиры отапливаются дровами и брикетом.


Рис.6. Муниципальное образовательное учреждение

Дивинская средняя общеобразовательная школа


Рис.7. Дом культуры д. Плоское

Рис.8. Игровые площадки детского сада д. Плоское

Благоустроенные квартиры, коттеджи, школа, детский сад и другие учреждения отапливаются природным газом.

В деревне один раз в две недели топиться общественная баня, которая использует для отопления дизельное топливо (солярка).

Печным отоплением (древесина, брикет, уголь) пользуются жители старых домов, частного сектора, и владельцы собственных бань.

По нормативам на каждую семью с печным отоплением расход древесины – 8 м 3 или 5 тонн.

На деревне, в домах частного сектора, проживает 14 семей, расход древесины которых составляет – 112 м 3 или 70 тонн.

В старых неблагоустроенных домах, проживает 29 семей. Расход древесины составляет 232 м 3 или 145тон. Общий расход древесины равен 344 м 3 или 215 тонн . Кроме древесины для отопления, используется уголь или брикет. Расход брикета или угля за отопительный сезон, составляет 3тонны.

Общий расход угля или брикета за год составляет 129 тонн или 129000 кг.

Рис. 9. Строения (дома частного сектора)

В деревне 21 частная баня. Для отопления бань используют в основном дрова из осины и берёзы. В среднем на отопительный сезон требуется 5 м 3 дров. Таким образом, за отопительный период сжигается 105 м 3 древесины.



Рис. 10. Индивидуальные строения (бани)

Нефтепродукты

В деревне Плоское проживает 471 семья. Каждая третья семья в деревне имеет свою автомашину (рис. 11). Топливом всех транспортных средств является бензин и солярка (дизельное топливо). Общее число частных автомобилей 164. В год каждая автомашина проезжает в среднем 20000 км. Расход топлива на каждые 100 километров 10литров. Тогда за год расходуется 328 000 литров бензина. При средней стоимости 20 рублей за литр за год получается 6 560 000 рублей .


Рис.11. Транспортные средства передвижения

В деревне есть мастерская (рис.12.), в которой разновидность техники: машины, трактора, комбайны. В зимний период времени расходы топлива транспортными средствами минимальны. Больше всего топлива расходуется в летний период времени, во время уборки. В течение года тратится 18 тонн солярки (дизтоплива) и 6 тонн бензина или 18000 кг солярки (дизтоплива) и 6000 кг бензина .

Рис.12. Мастерские

В нашей деревне построена баня для пользования всем населением. Вмещает баня около 30 человек. В бане есть сауна, бассейн, комната отдыха. Топиться баня два раза в месяц. Расход солярки за один стоп бани составляет 200 литров. За месяц объём солярки составил 400 литров, за год 4800 литров . Общая стоимость расходов 96000рублей в расчёте 20 рублей за литр.


Рис.13. Баня д. Плоское

Газ

Отопление благоустроенных квартир производится природным газом. На отопление трёх пятиэтажных домов (180 квартир), школы, детского сада построена отдельная котельная. За отопительный период с октября по апрель объём газа составляет 590 000 м 3 , стоимостью 1 475 000 рублей .

В коттеджах, двух и трёхэтажных домах установлены газовые котлы. Средний расход газа составляет 400 м 3 на семью. Общий расход составляет 593600 м 3 .

Всего расход газа составил 1 183 600 м 3 .


Рис.14. Котельная

Электроэнергия

Наша ЛЭП (линия электропередач) берёт своё начало в г. Десногорск. При среднем расходе за месяц 150 кВт электроэнергии за год 471 семья расходует 847 800 кВт электроэнергии. Школа за год расходует 24000 кВт электроэнергии на сумму 107520 рублей, детский сад 23 990 кВт электроэнергии на сумму 107475,2 рублей с учётом стоимости 4,48 рублей за1кВт.

Общее количество израсходованной энергии 895790 кВт .


Рис.15. Линия электропередач

Таким образом, по использованию природных ресурсов в д. Плоское и

составленным диаграммам 1 и 2 можно сделать следующие выводы:

Диаграмма 1. Расход природных ресурсов в д. Плоское

Диаграмма 2. Расход природных ресурсов в д. Плоское

Природные ресурсы – это наше богатство. Используя их, мы должны помнить, что их запасы не бесконечны. Диаграммы 1 и 2 показывают, что население д. Плоское эффективно использует разнообразие всех природных ресурсов, количество использования не малы. Сжигая их, мы получаем энергию (много энергии), загрязняя тем самым окружающую среду. Потребности населения с каждым годом растут. Необходимо защищать нашу Землю от хищнического использования природных ресурсов и перейти к экологически чистым источникам энергии.

Глава II . Нетрадиционные возобновляемые источники энергии

2.1. Энергия Солнца

В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас рассмотреть его возможности отдельно. Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики. Заметим, что использование всего лишь 0.0125% этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5% – полностью покрыть потребности на перспективу . К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения.

Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м 2 ,

рис.17. Поэтому, чтобы коллекторы солнечного излучения «собирали» за год энергию, необходимую для удовлетворения всех потребностей человечества, нужно разместить их на территории 130 000 км 2 !


Рис. 16. Среднегодовая плотность потока солнечной энергии (цифры над стрелками, Вт/м 2 ) и площадь поверхности Земли (цифры в рамках, 10 3 км 2 ) , на которую ежегодно падает поток солнечной энергии на различных широтах для чистой атмосферы

Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчетам изготовление коллекторов солнечного излучения площадью 1 км 2 , требует примерно 10 4 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1.17·10 9 тонн.

2.2. Энергия ветра

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры – от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии!

Существенным недостатком энергии ветра является ее изменчивость во времени, но его можно скомпенсировать за счет расположения ветроагрегатов. Если в условиях полной автономии объединить несколько десятков крупных ветроагрегатов, то средняя их мощность будет постоянной. При наличии других источников энергии ветрогенератор может дополнять

существующие. И, наконец, от ветродвигателя можно непосредственно получать механическую энергию.

2.3. Геотермальная энергия

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

2.4. Энергия внутренних вод

Огромные запасы энергии скрыты в текущей воде, как Мирового Океана, так и внутренних вод. Раньше всего люди научились использовать энергию рек. Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье – в виде водяной турбины. Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода, тем более что многовековой опыт у нее уже имелся. Преимущества гидроэлектростанций очевидны – постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды.

2.5. Энергия Мирового океана

В Мировом Океане скрыты колоссальные запасы энергии. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 10 26 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 10 18 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной. Однако происходящее весьма быстрое истощение запасов ископаемых топлив (прежде всего нефти и газа), использование которых к тому же связано с существенным загрязнением окружающей среды (включая сюда также и тепловое «загрязнение», и грозящее климатическими последствиями повышение уровня атмосферной углекислоты), резкая ограниченность запасов урана (энергетическое использование которых к тому же порождает опасные радиоактивные отходы) и неопределенность как сроков, так и экологических последствий промышленного использования термоядерной энергии заставляет ученых и инженеров уделять все большее внимание поискам возможностей рентабельной утилизации обширных и безвредных источников энергии и не только перепадов уровня воды в реках, но и солнечного тепла, ветра и энергии в Мировом океане. Широкая общественность, да и многие специалисты еще не знают, что поисковые работы по извлечению энергии из морей и океанов приобрели в последние годы в ряде стран уже довольно большие масштабы и что их перспективы становятся все более обещающими.

Океан таит в себе несколько различных видов энергии: энергию приливов и отливов, океанских течений, термальную энергию, и др.

2.6. Энергия биомассы

К биомассе, кроме уже упомянутых водорослей, можно также отнести и продукты жизнедеятельности домашних животных. Так, 16 января 1998 года в газете «Санкт Петербургские Ведомости» была напечатана статья, под названием «Электричество... из куриного помёта» в которой говорилось о том, что находящаяся в финском городе Тампере дочерняя фирма международного норвежского судостроительного концерна Kvaerner стремится получить поддержку ЕС для сооружения в британском Нортхэмптоне электростанции, действующей... на курином помете. Проект входит в программу EС Thermie, которая предусматривает развитие новых, нетрадиционных, источников энергии и методов сбережения энергетических ресурсов. Комиссия ЕС распределила 13 января 140 млн ЭКЮ среди 134 проектов.

Спроектированная финской фирмой силовая установка будет сжигать в топках 120 тысяч тонн куриного помета в год, вырабатывая 75 млн. киловатт-часов энергии.

Глава 3. Использование нетрадиционных источников энергии в

д. Плоское Починковского района

Природные богатства не бесконечны. Сейчас в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Нетрадиционные возобновляемые источники энергии включают солнечную, ветровую, геотермальную энергию, биомассу и энергию Мирового океана.

На карте (см. рис. 17.) указаны районы страны, где производство «экологически чистой» энергии наиболее перспективно.


Рис. 17. Перспективные районы производства

«экологически чистой» энергии

Из нетрадиционных источников энергии в нашей деревне широко используется солнечная энергия.

На высоте двух метров устанавливаются металлические ёмкости объёмом 200–300 литров, вода в которых нагревается в солнечную погоду до 40 – 45 С. Такие установки используются как душевые, они устанавливаются возле бань и частных домов (см. рис. 18 и рис. 19).


Рис. 18. Душевая установка Рис. 19. Душевая установка

(вид снаружи) (вид внутри)

Рис. 20. Показания термометра (справа) и градусника (слева)

В таких же ёмкостях жители деревни нагревают воду на своих огородах для полива огородных культур, таким образом, улучшая их рост, развитие и созревание (см. рис. 21).


Рис. 21. Ёмкость для полива растений на огороде

В 10 километрах от деревни Плоское расположено красивейшее озеро, дающее возможность, не только любоваться его красотой, но и удивляться той энергетической силе воды, которая срывается с пяти метровой высоты, падает вниз. Поэтому озеро не переполняется и не выходит из берегов.

На озере установлена дамба – гидротехническое сооружение, аналогичное по устройству земляной платине, предназначенная для защиты низменностей от затопления.

Около 63 млн. тонн воды ежегодно устремляются вниз с пяти метровой высоты дамбы. Энергии этой воды в весенний, летний и осенний периоды хватило бы, наверняка, для снабжения электроэнергией дач, построенных на берегу озера.


Рис. 22. Дивинское озеро

Произведение рассчетов:

Зная площадь основания плит дамбы и толщину слоя падающей воды, можно рассчитать объем падающей воды, который равен 3м 3 . Используя табличные данные плотностей жидкостей, можно рассчитать массу падающей воды, которая равна 3 т за 1 сек.

Из 365 дней 245 дней вода непрерывно движется, кроме 3-х месяцев: декабрь, январь и февраль. 245 дней – это 21 168 000 сек.

Исходя из выше изложенного, получается 63 млн. т воды за год протекает в «пустую», не принося пользы жителям данной местности.

Заключение

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан. Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного «корма». Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти. И вот новый виток: в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже. Замена? Нужен новый лидер энергетики.

Им, несомненно, станут ядерные источники. Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь. А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю... Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, «воинствующая» линия энергетики. В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков но времена изменились. Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика «щадящая». Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы.

Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении. Яркий пример тому быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со всем, и все тянется к энергетике, зависит от нее.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, «черных дырах», вакууме, это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики. Лабиринты энергетики. Таинственные переходы, узкие, извилистые тропки. Полные загадок, препятствий, неожиданных озарений, воплей печали и поражений, кликов радости и побед. Тернист, непрост, непрям энергетический путь человечества. Но мы верим, что мы на пути к Эре Энергетического Изобилия и что все препоны, преграды и трудности будут преодолены. Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и экономичные методы. Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве, и себестоимости. Нам, по-видимому, следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: «Нет простых решений, есть только разумный выбор».

Можно сделать следующие выводы:

1) природные ресурсы это наше достояние и мы должны проявлять заботу об экономичном их использовании;

2) пользуясь природными ресурсами, обязаны следить за загрязнением атмосферы и окружающей среды;

3) необходимо бережно пользоваться энергией, учиться получать энергию преобразованием из других форм.

Природа предъявляет строгие требования для человека. Действия и поступки человека не должны влиять на жизнедеятельность нашей планеты. Мы должны любить свою землю, оберегать её, не жить одним днём, а думать о будущём нашей планеты. Так что наше будущее в наших руках.

Список использованной литературы

1. Аугуста Голдин. Океаны энергии. – Пер. с англ. – М.:, 1983.

2. Вершинский Н.В. Энергия океана. – М.: Наука, 1986.

3. Володин В. П.Хазановский «Энергия, век двадцать первый». – М.:Наука,1998г.

4. Воронков В.А. Экология общая, социальная, прикладная: Учеб. для вузов. – М.: Агар: Рандеву-АМ, 1994.

5. Голдин А. «Океаны энергии». – М.:Знание,1989г.

6. Источники энергии. Факты, проблемы, решения. – М.: Наука и техника,

1997.

7. Ревелль П., Ревелль Ч. Среда нашего обитания: в 4-х книгах. – М.: Мир,

1994.

8. Экологически чистая энергетика (в помощь лектору) / Авт.-сост. А.А.

Каюмов. Горький: Горьковский областной совет ВООП и областной молодежный экологический центр «Дронт», 1990. 76 с.

9. Юдасин Л.С. «Энергетика: проблемы и надежды». – М.: Мир, 1991г.