Улучшение и регуляция общих процессов обмена веществ. Регуляция обмена веществ и энергии

  • 1.2.6. Нозологическая единица. Фенокопии и генокопии. Принципы классификации болезней
  • 1.2.7. Методологические принципы, лежащие в основе научного понимания сущности болезни
  • 2. Этиология
  • 2.1. Контрольные вопросы
  • 2.2. Рекомендации к ответам
  • 2.2.1. Понятия "этиология", "этиологический фактор", "условия", "повод", "причина болезни". Принципы этиотроп­ной профилактики и терапии болезней.
  • 2.2.2. Формы взаимодействия экзогенных этиологических факторов с организмом. Особенности возникновения патологии во внутриутробном периоде развития
  • 2.2.3. Подразделение болезней в зависимости от роли генетических и экзогенных факторов в этиологии
  • 2.2.4. Основы ошибочных представлений в этиологии
  • 3. Общий патогенез ненаследственных болезней
  • 3.1. Контрольные вопросы
  • 3.2. Рекомендации к ответам
  • 3.2.1. Понятие "патогенез". Основная структура патогене­за болезни
  • 3.2.3. Основные механизмы повреждения организма и нарушения его функций при возникновении и развитии болезни.
  • 3.2.4. Приспособительные явления в патогенезе, их виды
  • 3.2.5. Стресс как общий адаптационный синдром и его роль в патологии.
  • 3.2.6. Диалектическая оценка приспособительных явлений в патогенезе болезни
  • 4. Патофизиология повреждения клетки
  • 4.1. Контрольные вопросы
  • 4.2. Рекомендации к ответам
  • 4.2.1. Определение понятия повреждение. Причины по­вреждения клеток. Избирательность и специфичность повреждения
  • 4.2.2. Последствия повреждения основных клеточных органоидов.
  • 4.2.3. Механизмы, определяющие клеточную реактив­ность, и ее изменения.
  • 4.2.4. Патогенез повреждения клетки
  • 4.2.5. Саногенетические механизмы в процессе поврежде­ния клетки. Исходы повреждения
  • 5. Конституция человека. Механизмы формирования наследственной патологии
  • 5.1. Контрольные вопросы
  • 5.2. Рекомендации к ответам
  • 5.2.1. Конституция человека, роль наследственности и внешней среды в ее формировании
  • 5.2.2. Значение конституции для организма и
  • 5.2.3. Некоторые механизмы формирования
  • 5.2.3.1. Формирование патологии на почве нарушений ферментативных процессов
  • 5.2.4. Проявления конституциональной патологии
  • 5.2.5. Особенности людей нормальных конституциональ­ных типов и заболеваемость
  • 5.2.6. Принципы профилактики и терапии конституциональной патологии
  • 6. Реактивность организма и ее роль в патологии
  • 6.2. Рекомендации к ответам
  • 6.2.1. Реактивность, ее значение для организма и формы проявления. Реактивность и резистентность
  • 6.2.2. Факторы, определяющие индивидуальную реактивность организма
  • 6,2.4. Патогенез парааллергических процессов типа фено­менов Шварцмана и Санарелли
  • 6.2.5. Тахифилаксия, ее механизмы
  • 7. Иммунопатология
  • 7.1. Контрольные вопросы
  • 7.2. Рекомендации к ответам
  • 7.2.1. Аллергия. 7.2.1.1. Определение, значение, классификация
  • 7.2.1.2, Аллергены, сенсибилизация
  • 7.2.1.3. Антитела, участвующие в аллергических процессах
  • 7.2.1.4. Антитела, препятствующие аллергическим явлениям
  • 7.2.1.5. Регуляция аллергогенеза
  • 7.2.1.6. Патогенез аллергических процессов
  • 7.2.1.7. Аллергия и наследственность
  • 7.2.1.11. Принципы профилактики и терапии аллергических процессов
  • 8. Диссеминированное
  • 8.2.3. Патогенез двс
  • 8.2.3.1. Механизмы расстройства микроциркуляции при двс
  • 8.2.3.2. Порочные круги в развитии двс
  • 8.2.4. Стадии развития двс
  • 8.2.5. Течение и клинические проявления двс - тромбоге-моррагический синдром (тгс)
  • 9. Лихорадка. Гипертермия
  • 9.1. Контрольные вопросы
  • 9.2.2. Причины возникновения лихорадки
  • 9.2.3. Патогенез лихорадки. Стадии ее развития
  • 9.2.4. Особенности развития лихорадки у детей
  • 9.2.5. Изменение обмена веществ и функций организма при лихорадке
  • 9.2.6. Гипертермия. Стадии развития. Отличие лихорадки от гипертермии
  • 9.2.7. Биологическое значение лихорадки
  • Содержание
  • 6. Реактивность организма и ее роль в патологии

    6.1. Контрольные вопросы

    1. Реактивность, ее значение для организма и формы про­явления. Реактивность и резистентность. 2. Факторы, опреде­ляющие индивидуальную реактивность организма. 3. Механизмы изменения реактивности организма и пути направленного на нее воздействия. 4. Патогенез парааллергических процессов типа феноменов Шварцмана и Санарелли. 5. Тахифилаксия, ее ме­ханизмы.

    6.2.1. Реактивность, ее значение для организма и формы проявления. Реактивность и резистентность

    Реактивность - свойство организма или его частей опреде­ленным образом реагировать на действие различных раздражи­телей. Это одно из основных, фундаментальных свойств живого. От реактивности в очень большой степени зависит приспособляе­мость организма к условиям среды, следовательно, его устойчи-

    вость к действию патогенных факторов. Таким образом, реактив­ность в большой мере определяет, возникнет ли болезнь при встрече с болезнетворным фактором и как она будет протекать.

    Реактивность может проявляться в форме нормергии , ди - зергии (извращенной реактивности), гиперергии и гип (ан )- ергии . В зависимости от механизма гип(ан)ергию делят на по­ложительную и отрицательную. При положительной внешние проявления реакции снижены (отсутствуют) из-за наличия ак­тивной защиты, например, антимикробного или антитоксичес­кого иммунитета. При отрицательной - из-за того, что реагиру­ющие структуры заторможены, угнетены, истощены или сни­жено количество клеточных рецепторов (или они отсутствуют) в результате их интернализации, связывания, инактивации, по­вреждения, генетических особенностей. Если в связи с отрица­тельной гип(ан)ергией обычным образом не вызываются или ослаблены патологические реакции или процессы, говорят о повышенной пассивной устойчивости (например, при электро­травме в наркозе, нередко - при конституциональной антимик­робной устойчивости).

    Оценивать реактивность следует всегда по отношению к ка­кому-то одному фактору, так как к разным воздействиям она может быть изменена в разных направлениях. Например, по отношению к одному антигену может иметь место специ­фическая гиперергия (аллергия), и в то же время по отношению к другому - положительная анергия (иммунитет). Так же диф­ференцированно нужно оценивать и устойчивость организма при изменениях реактивности. Например, в наркозе увеличивает­ся пассивная устойчивость к действию электрического тока, но снижается активная устойчивость к кровопотере, к изменениям температуры среды. В условиях гипотермии отек легких, вызыва­емый хлорамином, течет легче, а адреналином - тяжелее.

    6.2.2. Факторы, определяющие индивидуальную реактивность организма

    Реактивность зависит от вида. Чем выше организовано жи­вотные, тем сложнее его реактивность, тем более развиты активные формы резистентности (например, воспаление, им­мунитет, лихорадка, защитные рефлексы, поведенческие ре­акции). Пассивная резистентность при этом обычно снижается. Особенно резко пассивная устойчивость оказывается повышен-50

    ной ко многим факторам во время зимней спячки, свойствен­ной некоторым видам животных, а у человека - во время ле­таргического сна.

    Реактивность зависит от пола. Например, вирус Биттнера вызывает рак молочной железы только у самок мъшей, а у самцов - при условии их кастрации и введения женских половых гормонов; мужчины менее устойчивы к ряду неблагоприятных воздействий, чем женщины.

    Реактивность зависит от возраста. Например, дети до ме­сячного возраста не заболевают эпидемическим паротитом, скарлатиной, даже если болеет кормящая их мать. У детей до трех месяцев и у старых людей активность ферментов, мета-болизирующих лекарственные препараты, снижена. Поэтому лекарства назначаются в этих случаях, как правило, в меньших дозах.

    Некоторые особенности реактивности присущи группам людей. Например, темнокожие меньше чувствительны к кан­церогенному действию солнечных (УФ) лучей. У светловолосых и имеющих группу крови А (II) чаще встречаются первичные неспецифические иммунодефициты (интерферон); у лиц со второй группой крови несколько выше заболеваемость ИБС и раком желудка. По-видимому, у них есть и какие-то преиму­щества перед другими.

    Реактивность существенно зависит от конституции. Поэто­му разные люди предрасположены к разным болезням, есть люди, никогда не заболевающие какой-либо инфекцией (кон­ституциональная резистентность). Эта резистентность может зависеть от отсутствия на поверхности клетки химических ради­калов, рецепторов, необходимых для фиксации микробов, или веществ, нужных для их развития, или от синтеза таких про­дуктов, которые мешают развитию инфекта. Формирование приобретаемого (реактивного) иммунитета также во многом зависит от конституциональных особенностей.

    Существуют циклические изменения реактивности, связан­ные со сменой времен года, дня и ночи, нейрогормональными сдвигами (менструальный цикл). О важной роли циклов гово­рит, например, то, что смертность при ночных операциях втрое больше, чем при дневных.

    На реактивность постоянно влияют и многие другие, прехо­дящие факторы: психогенные, температурные, антигенные, лекарственные и др. (рис. 4).

    Таким образом, наследственное разнообразие людей в со­четании с постоянно меняющимися влияниями внешней среды на каждого человека создает бесчисленные варианты его ре­активности и резистентности, от которых зависит возникновение и течение патологии.

    6.2.3. Механизмы изменения реактивности организма и пути направленного на нее влияния

    В основе реактивности организма, его систем и органов ле­жит реактивность клеток. На поверхности клетки существует высокореактивная микросреда - гликокаликс. Состояние этой среды, содержащей мембранные рецепторы, определяет спо­собность клетки отвечать на раздражения. Поэтому все влия­ния, от которых зависит количество и состояние рецепторов, отражаются на реактивности клетки. Ими могут быть конститу­циональные особенности, нервные и гуморальные регулятор-ные влияния, повреждения. Наряду с этим, клеточная реактив­ность зависит и от разнообразных влияний на механизм пере­дачи раздражения от рецепторов внутрь клетки, на субклеточ­ные образования, в том числе и на генетический аппарат (под­робнее см. раздел Повреждение клетки).

    В механизмах изменения реактивности организма важней­шую роль играют:

      Изменение функционального состояния нервной сис­ темы . Например, двигательная реакция на раздражение кожи в наркозе резко угнетается, а после введения стрихнина - рез­ ко возрастает. Другим примером измененной реактивности мо­ жет служить неадекватная реакция больного неврозом или пси­ хозом на словесное к нему обращение.

      Изменения функции эндокринной системы . Известно, например, что при недостаточной функции надпочечников, щи­ товидной, поджелудочной железы тяжело текут многие сла­ бовирулентные инфекции, что при гиперфункции гипофизар- но-надпочечниковой системы (например, при стрессе), наобо­ рот, увеличивается устойчивость к ряду патогенных факторов.

      Функция активных элементов соединительной ткёни . С ней связано возникновение иммунитета и аллергии, неспеци­ фическая защита организма, осуществляемая макро- и мик­ рофагами, и некоторые другие отправления. Для стимуляции этой функции академик А. А.Богомолец предложил антирети-

    кулярную цитотоксическую сыворотку, которую, наряду с не­которыми другими препаратами (БЦЖ), продолжают успешно использовать.

    4. Изменения обмена веществ . Известно, например, что при голодании слабо развиваются иммунитет и аллергия; стер­то текут такие инфекции, как крупозная пневмония, менингит, дающие, однако, тяжелые осложнения.

    Чаще встречаются сложные комбинации разных механиз­мов. Так, при влиянии на центральную нервную систему часто вовлекаются и эндокринная система, и обмен веществ, и ак­тивные мезенхимальные элементы.

    Мощными рычагами изменения реактивности в целях увели­чения резистентности организма являются психогенные влияния (психопрофилактика и терапия), вакцинация, такие неспецифи­ческие воздействия, как тренировки (мышечные, гипоксичес-кие, холодовые), также многие фармакологические препара­ты (нейротропные, эндокринные, вакцины и сыворотки, вита­мины и др.).

    Центральной структурой, регулирующей обмен веществ и энергии, яв­ляется гипоталамус. В гипоталамусе локализованы ядра и центры регуляции голода и насыщения, осморегуляции и энергообмена. В ядрах гипоталамуса осуществляется анализ состояния внутренней среды организма. Также здесь формируются управляющие сигналы, которые посредством эфферентных систем приспосабливают ход метаболиз­ма к потребностям конкретного организма. Эфферентными звеньями системы ре­гуляции обмена являются симпатический и парасимпатический от­делы вегетативной нервной системы и эндокринная система.

    Обмен веществ и получение аккумулируемой в АТФ энергии происходят внутри клеток. В связи с этим важнейшим эффектором, через кото­рый вегетативная нервная и эндокринная системы воздействуют на обмен веществ и энергии, являются клетки органов и тканей. Регу­ляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

    Воздействие гипоталамуса на обмен белков осуществляется через систему гипоталамус-гипофиз-щитовидная железа. Повышенная продукция тиреотропного гормона передней доли гипофиза вызывает увеличение синтеза тироксина и трийодтиронина щитовидной железы. Эти гормоны регулируют белковый обмен. На обмен белков оказывает прямое влияние и соматотропный гормон гипофиза.

    Регуляторная роль гипоталамуса в жировом обмене связана с функцией серого бугра. Влияние гипоталамуса на обмен жиров опосре­довано изменением гормональной функции гипофиза, щитовидной и половых желез. Недостаточность гормональной функции желез приводит к ожирению. Более сложные расстройства жирового обмена наблюдаются при изменении функций поджелудочной железы. В этом случае они бывают связаны с нарушениями углевод­ного обмена. Истощение запасов гликогена при инсулиновой недо­статочности приводит к компенсаторному усилению процессов глюконеогенеза. Вследствие этого в крови увеличивается содержание кетоновых тел (бета - оксимасляной, ацетоуксусной кислот и аце­тона). Нарушение фосфолипидного обмена приводит к жировой ин­фильтрации печени. Лецитины и кефалины при этом легко отдают жирные кислоты, идущие на синтез холестерина, что в последующем обусловливает изменения, связанные с гиперхолестеринемией.

    На углеводный обмен гипоталамус воздействует через симпатичес­кую нервную систему. Симпатические влияния усиливают функ­цию мозгового слоя надпочечников, выделяющего адреналин. Адреналин стимулирует мобилизацию гликогена из печени и мышц. Главными гумо­ральными факторами регуляции углеводного обмена являются гор­моны коры надпочечников и поджелудочной железы (глюкокортикоиды, инсулин и глюкагон). Глюкокортикиоды (кортизон, гидро­кортизон) оказывают ингибирующее (тормозящее) воздействие на глюкокиназную реакцию печени и снижают уровень глюкозы в крови. Инсулин способствует утилизации сахара клетками, а глюкагон уси­ливает мобилизацию гликогена, его расщепление и увеличение со­держания глюкозы в крови.

    В гипоталамусе расположены нервные центры, регулирующие вод­но-солевой обмен. Здесь же находятся и осморецепторы. Их раздражение рефлекторно влияет на водно-солевой обмен, обеспечивая постоянство внутренней среды организма. Большую роль в регуля­ции водно-солевого обмена играют антидиуретический гормон гипо­физа и гормоны коры надпочечников (минералкортикоиды). Гормон гипофиза стимулирует обратное всасывание воды в почках и умень­шает этим мочеобразование. Минералкортикоиды (альдостерон) действуют на эпителий почечных канальцев и повышают обратное всасывание в кровь натрия. Регулирующее воздействие на обмен воды и солей оказывают также гормоны щитовидной и паращитовидных желез. Гомоны щитовидной железы увеличивает мочеобразование, гормоны паращитовидных желез способ­ствует выведению из организма солей кальция и фосфора.

    Энергетический обмен в организме регулируется нервной и эндок­ринной системами. Уровень энергообмена даже в состоянии относи­тельного покоя может изменяться под влиянием условно рефлекторных раздражителей. Существенно влияют на уровень энергообмена гормоны гипофиза и щитовидной желе­зы. При усилении функции этих желез величина энергообмена повышается, при ослаблении - понижается.

    Теплообмен

    5.7.1 Температура тела человека. Изотермия

    Способность организма человека сохранять постоянную темпера­туру обусловлена сложными биологическими и физико-химически­ми процессами терморегуляции. В отличие от холоднокровных (пойкилотермных) животных, температура тела теплокровных (гомойотермных) животных при колебаниях температуры внешней среды поддерживается на определенном уровне, наиболее выгодном для жизнедеятельности организма. Поддержание теплового баланса осуществляется благодаря строгому балансу между образованием теп­ла и его отдачей.

    Величина теплообразования зависит от интенсивности химических реакций, характеризующих уровень обмена веществ. Теплоотдача регулируется преимущественно физическими процессами (теплоизлучение, теплопроведение, испарение).

    Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания темпе­ратуры внешней среды. Это постоянство температуры тела носит на­звание изотермии. Изотермия в процессе онтогенеза развивается постепенно. У новорожденных детей она несовершенна и ус­тойчивый характер приобретаете возрастом. Перераспределение теп­ла между тканями осуществляется через кровь. Кровь обладает высокой теплоемкостью и переносит тепло от тканей с высоким уровнем теплообразования к тканям, где тепла образуется мало. В результате выравнивается уровень температуры в различ­ных частях тела и их областях.

    Температура поверхностных тканей обычно ниже температуры глубоких тканей. Температура поверх­ности тела неравномерна. Она зависит от интенсивности переноса к ней тепла кровью из глубоких частей тела, а также от охлаждающего или согревающего действия температуры внешней среды. Так, температура кожи на покрытых одеждой участках колеблется от 29° до 34°. Колебания температуры кожи на открытых частях тела в основном зависят от температуры внешней среды.

    Температура глубоких тканей более равномерна и составляет 37-37,5°. Темпе­ратура печени, мозга, почек несколько выше, чем других внутренних органов.

    О температуре тела человека судят обычно по ее измерениям в под­мышечной впадине. Здесь температура у здорового человека равна 36,5-37°. Темпе­ратура тела ниже 24° и выше 43° не совмес­тима с жизнью человека. Изотермия име­ет большое значение для обменных процессов. Ферменты и гормоны облада­ют наибольшей активностью при темпе­ратуре 35-40°. Температура тела человека не остается постоянной, а колеблется в те­чение суток в пределах 0,5-0,8°. Макси­мальная температура тела наблюдается в 16-19 часов, а минимальная - в 3-4 часа.

    Постоянство температуры тела у человека может сохраняться лишь при условии равенства теплообразования и теплопотери всего организма. Это достигается за счет физиологических механиз­мов терморегуляции. Выделяют химическую и физическую терморегуляцию. Способность человека противостоять воздействию тепла и холода, сохраняя стабильную температуру тела, имеет определенные пределы. При чрезмерно низкой или высокой температу­ре внешней среды защитные терморегуляционные механизмы оказываются недостаточными, и температура тела начинает резко падать или по­вышаться. В первом случае развивается состояние гипотермии, во втором - гипертермии.

    5.7.2 Механизмы теплообразования

    Образование тепла в организме происходит в результате химических реакций обмена веществ. При окислении пи­тательных веществ и других реакций тканевого метаболизма обра­зуется тепло. Величина теплообразования тесно связана с уровнем метаболической активности организма. Поэтому теплопро­дукцию называют также химической терморегуляцией.

    Химическая терморегуляция имеет особо большое значение в поддержания постоянства температуры тела в условиях охлаждения. При понижении температуры окружающей среды уве­личивается интенсивность обмена веществ и, следовательно, теплооб­разование. У человека усиление теплообразования отмечается в том случае, когда температура окружающей среды становится ниже температуры комфорта. В обычной легкой одежде она равна 18-20°, а для обнаженного чело­века-28°С.

    Суммарное теплообразование в организме происходит входе хи­мических реакций обмена веществ (окисление, гликолиз), что со­ставляет так называемое первичное тепло и при расходовании энергии макроэргических соединений (АТФ) на выполнение работы (вторичное тепло). В виде первичного тепла в тканях рассеивается 60-70% энергии. Остальные 30-40% после расщепле­ния АТФ обеспечивают работу мышц, различные процессы синте­за, секреции и др. Но и при этом та или иная часть энергии перехо­дит затем в тепло. Таким образом, и вторичное тепло образуется вследствие экзотермических химических реакций, а при сокраще­нии мышечных волокон - в результате их трения. В конечном итоге переходит в тепло или вся энергия, или подавляющая ее часть.

    Наиболее интенсивное теплообразование в организме происходит в мышцах при их сокращении. Относительно небольшая двигательная активность увеличивает теплообразование в 2 раза, а тяжелая работа - в 4-5 раз и более. Однако в этих условиях существенно воз­растают потери тепла с поверхности тела.

    При продолжительном охлаждении организма возникают непро­извольные периодические сокращения скелетной мускулатуры (холо­довая дрожь). При этом почти вся метаболическая энергия в мышце освобождается в виде тепла. Активация в условиях холода симпати­ческой нервной системы стимулирует липолиз в жировой ткани. В кровоток выделяются и в последующем окисляются с образованием большого количества тепла свободные жирные кислоты. Наконец, повышение теплопродукции связано с усилением функций надпочеч­ников и щитовидной железы. Гормоны этих желез, усиливая обмен веществ, вызывает повышенное теплообразование. Следует также иметь в виду, что все физиологические механизмы, которые регули­руют окислительные процессы, влияют в то же время и на уровень теплообразования.

    5.7.3 Механизмы теплоотдачи

    Отдача тепла организмом (физическая терморегуляция) осуще­ствляется путем излучения, проведения и испарения. С излучением отдается примерно 50-55% тепла в окружающую среду - путем лучеиспускания (за счет инфракрасной части спектра). Количество тепла, которое рассеивается организмом в окружающей среде с излучени­ем, пропорционально площади поверхности частей тела, со­прикасающихся с воздухом, и разности средних значений температур кожи и окружающей среды. Отдача тепла излучением прекращается, если выравнивается температура поверхности кожи и окружающей среды.

    Теплопроведение может происходить путем кондукции и конвекции. Кондукцией тепло теряется при непосредственном контакте участков тела человека с другими физическими средами (например, человек держит в руке ложку, и она нагревается). При этом количество теряемого тепла пропорционально разнице средних температур контактирующих поверхностей и времени теп­лового контакта. Конвекция это способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха. Конвекцией тепло рассеивается при обтекании поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. Движение воздушных потоков (ветер, вентиляция) увеличи­вают количество отдаваемого тепла. Путем теплопроведения орга­низм теряет 15-20% тепла. При этом конвекция представляет более мощный механизм теплоотдачи, чем кондукция.

    Теплоотдача путем испарения - это способ рассеивания организмом тепла (около 30%) в окружающую среду за счет его зат­раты на испарение пота или влаги с поверхности кожи и слизистых дыхательных путей. При температуре внешней среды 20° испарение влаги у человека составляет 600-800 г в сутки. При переходе в воздух 1 г воды организм теряет 0,58 ккал тепла. Если внешняя температура выше среднего значение температуры кожи, то организм не отда­ет во внешнюю среду теплоизлучением и проведением, а наоборот, поглощает тепло извне. Испарение жидкости с поверхности тела происходит при влажности воздуха менее 100%.

    5.7.4 Регуляция теплового обмена

    Регуляция теплообмена обеспечивает баланс между количеством продуцируемого в единицу времени тепла и количеством тепла, рас­сеиваемого организмом за то же время в окружающую среду. В ре­зультате температура тела человека поддерживается на относительно постоянном уровне.

    Восприятие и анализ температуры окружающей среды осуществляется с помощью терморецепторов. Терморецепторы находятся в коже, мышцах, сосудах, во внутренних органах, дыхательных пу­тях, спинном и среднем мозге. Одни из них реагируют на холод (холодовые рецепторы), которых на поверхности тела человека насчитыва­ется около 250000, другие - на тепло (тепловые рецепторы), их при­мерно 30000. Разветвленная сеть терморецепторов обеспечивает под­робную информацию о температурных изменениях во внешней и внутренней среде организма. Данная информация поступает в высшие центры теплообмена.

    Центральный аппарат терморегуляции находится в передней и задней части гипоталамуса, а также в ретикулярной формации сред­него мозга. Центр терморегуляции содержит различные по функци­ям группы нервных клеток. Термочувствительные нейроны пере­днего гипоталамуса поддерживают базальный уровень («установоч­ную точку») температуры тела в организме человека. Эффекторные нейроны заднего гипоталамуса и среднего мозга управляют процесса­ми теплопродукции и теплоотдачи.

    Важная роль в терморегуляции принадлежит высшим отделам ЦНС - коре и ближайшим подкорковым центрам. Эмоциональное возбуждение, изменения в психическом состоянии оказывают суще­ственное влияние на уровень теплообразования и теплоотдачи. От­четливые изменения температуры тела наблюдаются у спортсменов при стартовом возбуждении (предстартовая лихорадка). При дли­тельной мышечной работе температура тела может повышаться до 39-40° и более.

    В осуществлении гуморальной регуляции теплообмена участвуют железы внутренней секреции, главным образом щитовидная железа и над­почечники. Участие щитовидной железы в терморегуляции обуслов­лено тем, что влияние пониженной температуры приводит к усиленному выделению ее гормонов, повышающих обмен веществ, и, сле­довательно, теплообразование. Роль надпочечников связана с выде­лением ими в кровь катехоламинов, которые, усиливая окислительные процессы в тканях, в частности в мышцах, увеличи­вают теплопродукцию и суживают кожные сосуды, уменьшая тепло­отдачу.

    Обмен веществ и энергии подразумевает комплекс непростых биохимических реакций, разобраться в которых обычному человеку бывает довольно сложно. Данная статья поможет понять, какие процессы происходят в организме с необходимыми соединениями, которые мы потребляем с едой и что влияет на наш метаболизм.

    Энергообмен и метаболизм протекают по общей схеме:

    • поступление веществ в организм, его преобразование и абсорбция;
    • применение в организме;
    • выведение или запасание излишков.

    Все процессы метаболизма разделяются на 2 типа:

    1. Ассимиляция (пластический обмен, анаболизм) – образование специфичных для организма соединений из поступивших в него веществ.
    2. Диссимиляция – процессы разложения сложных органических соединений до более простых, из которых потом будут образованы новые, особенные вещества. Реакции диссимиляции проходят с высвобождением энергии, поэтому совокупность такого вида процессов называют также энергообменом или катаболизмом.

    Данные процессы противоположны друг другу, но тесно связаны между собой. Они протекают непрерывно, обеспечивая нормальную жизнедеятельность. За регуляцию обмена веществ и энергии отвечает нервная система. Главным отделом ЦНС, управляющим всеми типами метаболизма, является гипоталамус.

    Основные виды

    В зависимости от форм соединений, которые подвергаются трансформации в организме, выделяют несколько видов обмена. Каждый из них имеет свою специфику.

    Белки

    Белки или пептиды – полимеры, образованные аминокислотами.

    Выполняют множество жизненно важных функций:

    • структурная (присутствуют в структуре клеток тканей, составляющих организм человека);
    • ферментативная (ферменты – это белки, участвующие практически во всех биохимических процессах);
    • двигательная (взаимодействие пептидов актина и миозина обеспечивает все движения);
    • энергетическая (разлагаются, высвобождая энергию);
    • защитная (белки – иммуноглобулины участвуют в формировании иммунитета);
    • участвуют в регуляции водно-солевого баланса;
    • транспортная (обеспечивают доставку газов, биологически активных веществ, лекарственных средств и др.).

    Попав в организм с продуктами питания, белки распадаются до аминокислот, из которых затем синтезируются новые, свойственные данному организму пептиды. При малом поступлении белков с продуктами питания, 10 из 20 необходимых аминокислот могут вырабатываться организмом, остальные же являются незаменимыми.

    Этапы белкового метаболизма:

    • поступление белков с пищей;
    • распад пептидов до аминокислот в ЖКТ;
    • перемещение последних в печень;
    • распределение аминокислот в тканях;
    • биосинтез специфичных пептидов;
    • выведение из организма неиспользованных аминокислот в виде солей.

    Жиры

    К видам обмена веществ и энергии в организме человека относится и метаболизм жиров. Жиры — соединения глицерина и жирных кислот. Долгое время считалось, что их употребление не обязательно для полноценной работы организма. Однако определенные типы таких веществ содержат значимые противосклеротические составляющие.

    Жиры, будучи важным источником энергии, помогают сохранить в организме белки, которые начинают использоваться для ее получения при нехватке углеводов и липидов. Жиры обязательны для усвоения витаминов А, Е, D. Также липиды содержатся в цитоплазме и клеточной стенке.

    Биологическая ценность жиров определяется типом жирных кислот, которыми они были образованы. Эти кислоты могут иметь два вида:

    1. Насыщенные, не имеющие в своей структуре двойных связей, считаются наиболее вредными, так как чрезмерное употребление продуктов с большим содержанием данного вида кислот может стать причиной атеросклероза, ожирения и прочих заболеваний. Присутствуют в сливочном масле, сливках, молоке, жирном мясе.
    2. Ненасыщенные - полезные для организма. К ним относятся Омега -3, -6 и -9 кислоты. Способствуют укреплению иммунитета, восстановлению гормонального фона, предупреждают отложение холестерина, улучшают внешний вид кожи, ногтей и волос. Источники подобных соединений - масла разных растений и рыбий жир.

    Этапы обмена липидов:

    • поступление жиров в организм;
    • распад в ЖКТ до глицерина и жирных кислот;
    • образование липопротеидов в печени и тонком кишечнике;
    • транспорт липопротеидов в ткани;
    • образование специфических липидов клеток.

    Жировые излишки откладываются под кожей или вокруг внутренних органов.

    Углеводы

    Углеводы или сахара - главный источник энергии в организме.

    Процессы обмена углеводов:

    • преобразование углеводов в ЖКТ в простые сахара, которые затем всасываются;
    • превращение глюкозы в гликоген, его накопление в печени и мышцах либо использование для выработки энергии;
    • преобразование гликогена в глюкозу печенью в случае падения уровня сахара в крови;
    • создание глюкозы из неуглеводных компонентов;
    • превращение глюкозы в жирные кислоты;
    • кислородное разложение глюкозы до углекислого газа и воды.

    В случае чрезмерного употребления пищи, богатой глюкозой, углевод преобразуется в липиды. Они откладываются под кожей и могут быть использованы для дальнейшей трансформации энергии в клетках.

    Значение воды и минеральных солей

    Водно-солевой обмен – комплекс процессов поступления, применения и выведения воды и минералов. Большая часть жидкости поступает в организм извне. И также она в малых объемах выделяется в организме в ходе разложения питательных веществ.

    Функции воды в организме:

    • структурная (необходимый компонент всех тканей);
    • растворение и транспорт веществ;
    • обеспечение многих биохимических реакций;
    • обязательный компонент биологических жидкостей;
    • обеспечивает постоянство водно-солевого баланса, участвует в терморегуляции.

    Из организма жидкость выводится с помощью легких, потовых желез, мочевыделительной системы и кишечника.

    Минеральные соли, получаемые с пищей, можно разделить на макро- и микроэлементы. К первым относят минералы, содержащиеся в значительных количествах - магний, кальций, натрий, фосфор и прочие. Микроэлементы нужны организму в очень малом объеме. К ним относятся железо, марганец, цинк, йод и другие элементы.

    Нехватка минералов может негативно сказаться на деятельности различных систем организма. Так, при дефиците магния и калия наблюдаются сбои в работе ЦНС, мышц (в том числе и миокарда). Недостаток кальция и фосфора может сказаться на прочности костей, а нехватка йода - на функции щитовидной железы. Нарушения водно-солевого баланса способно стать причиной мочекаменной болезни.

    Витамины

    Витамины – большая группа простых соединений, необходимых для полноценной работы всех систем организма.

    Витамины делятся на 2 группы:

    • водорастворимые (витамины группы В, витамин С и РР), не накапливающиеся в организме;
    • жирорастворимые (А, D, Е), имеющие подобное свойство накопления.

    Определенные соединения (витамин В12, фолиевая кислота) вырабатываются кишечной микрофлорой. Многие витамины являются частью различных ферментов, без которых невозможно осуществление биохимических процессов.

    Этапы обмена витаминов:

    • поступление с пищей;
    • перемещение к месту накопления или утилизации;
    • преобразование в кофермент (составляющее фермента небелкового происхождения);
    • соединение кофермента и апофермента (белковой части фермента).

    При нехватке какого-либо витамина развивается гиповитаминоз, при избытке – гипервитаминоз.

    Обмен энергии

    Энергетический обмен (катаболизм) – комплекс реакций распада сложных питательных веществ до более простых с выходом энергии, без которой невозможны рост и развитие, движение и другие проявления жизнедеятельности. Полученная энергия накапливается в форме АТФ (универсальный энергетический источник в живых организмах), который содержится во всех клетках.

    Количество энергии, высвобождаемой после употребления продукта питания, называется его энергетической ценностью. Измеряется этот показатель в килокалориях (ккал).

    Энергообмен проходит в несколько этапов:

    1. Подготовительный. Подразумевает распад сложных питательных веществ в ЖКТ до более простых.
    2. Бескислородное брожение — трансформация глюкозы без участия кислорода. Процесс протекает в цитоплазме клеток. Конечными продуктами этапа являются 2 молекулы АТФ, вода и пировиноградная кислота.
    3. Кислородный или аэробный этап. Проходит в митохондриях (специальных органоидах клеток), при этом пировиноградная кислота распадается с участием кислорода, образуя 36 молекул АТФ.

    Терморегуляция

    Терморегуляцией называют способность живого организма поддерживать постоянную температуру тела, которая является важным показателем теплового обмена. Чтобы этот показатель был стабильным, должно соблюдаться равенство между теплоотдачей и теплопродукцией.

    Теплопродукция -выделение тепла в организме. Его источником служат ткани, в которых протекают реакции с высвобождением энергии. Так, важную роль в терморегуляции играет печень, ведь в ней осуществляется множество биохимических процессов.

    Теплоотдача или физическая регуляция может проходить по трем путям:

    • теплопроведение – отдача тепла окружающей среде и предметам, соприкасающимся с кожей;
    • теплоизлучение – отдача тепла воздуху и окружающим предметам путем излучения инфракрасных (тепловых) лучей;
    • испарение – отдача тепла с помощью улетучивания влаги с потом или в процессе дыхания.

    Что влияет на процесс метаболизма

    Обмен веществ каждого конкретного организма имеет свои особенности. Скорость метаболизма определяется несколькими факторами:

    • половая принадлежность (обычно у мужчин процессы метаболизма протекают несколько быстрее, чем у женщин);
    • генетический фактор;
    • доля мышечной массы (людям, обладающим развитой мускулатурой требуется больше энергии для работы мышц, поэтому происходящие процессы будут протекать быстрее);
    • возраст (с годами скорость обмена веществ снижается);
    • гормональный фон.

    Огромное влияние на процесс метаболизма оказывает питание. Здесь важен и рацион, и режим приема пищи. Для правильной работы организма нужно оптимальное количество употребляемых белков, жиров, углеводов, витаминов, минералов и жидкости. Важно помнить, что принимать пищу лучше понемногу, но часто, так как большие перерывы между трапезами способствуют замедлению обмена веществ, а значит, могут привести к ожирению.

    В регуляции обмена веществ и энергии выделяют регуляцию об­мена организма веществами и энергией с окружающей средой и регуляцию метаболизма в самом организме.

    Регуляция обмена организма с окружающей средой питательными веществами рассматривается в главе 9.

    Вопросы регуляции водно-солевого обмена описаны в главе 12. Регуляция обмена организма с окружающей средой теплом, как конечной формой превращения всех видов энергии, обсуждается в главе 11.

    Поэтому здесь представлены общие вопросы нейрогуморальной регуляции обмена веществ и энергии в организме и, главным об­разом, регуляция метаболизма целостного организма.

    Конечной целью регуляции обмена веществ и энергии является удовлетворение в соответствии с уровнем функциональной актив­ности потребностей целостного организма, его органов, тканей и отдельных клеток в энергии и разнообразных пластических веще­ствах. В целостном организме постоянно существует необходимость согласования общих метаболических потребностей организма с по­требностями клетки органа, ткани. Такое согласование достигается посредством распределения между органами и тканями веществ, поступающих из окружающей среды, и перераспределения между ними веществ, синтезирующихся внутри организма.

    Обмен веществ, протекающий внутри организма, не связан пря­мыми способами с окружающей средой. Питательные вещества,


    Прежде чем они смогут вступить в обменные процессы, должны быть получены из пищи в желудочно-кишечном тракте в молеку­лярной форме. Кислород, необходимый для биологического окисле­ния, должен быть выделен в легких из воздуха, доставлен в кровь, связан с гемоглобином и перенесен кровью к тканям. Скелетные мышцы, являясь в организме одним из мощных потребителей энер­гии, также обслуживают обмен веществ и энергии, обеспечивая по­иск, прием и обработку пищи. Непосредственное отношение к об­мену веществ и энергии имеет выделительная система. Таким об­разом, регуляция обмена веществ и энергии - это мультипарамет-рическая регуляция, включающая в себя регулирующие системы мно­жества функций организма (например, дыхания, кровообращения, выделения, теплообмена и др.).

    Роль центра в регуляции обмена веществ и энергии играет гипо­таламус. Это обусловлено тем, что в гипоталамусе локализованы нервные ядра и центры, имеющие непосредственное отношение к регуляции голода и насыщения, теплообмена, осморегуляции. В гипоталамусе идентифицированы полисенсорные нейроны, реагиру­ющие сдвигами функциональной активности на изменения концент­рации глюкозы, водородных ионов, температуры тела, осмотического давления, т.е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ со­стояния внутренней среды организма и формируются управляющие сигналы, которые посредством эфферентных систем приспосаблива­ют ход метаболизма к потребностям организма.


    В качестве звеньев эфферентной системы регуляции обмена ис­пользуется симпатический и парасимпатический отделы вегетатив­ной нервной системы. Выделяющиеся их нервными окончаниями медиаторы оказывают прямое или опосредованное вторичными по­средниками влияние на функцию и метаболизм тканей. Под управ­ляющим влиянием гипоталамуса находится и используется в каче­стве эфферентной системы регуляции обмена веществ и энергии - эндокринная система. Гормоны гипоталамуса, гипофиза и других эндокринных желез оказывают прямое влияние на рост, размноже­ние, дифференцировку, развитие и другие функции клеток. Гормоны принимают участие в поддержании в крови необходимого уровня таких веществ, как глюкоза, свободные жировые кислоты, мине­ральные ионы (см. главу 5).

    Обмен веществ (анаболизм и катаболизм), получение запасаемой в макроэргических связях АТФ энергии, выполнение различных ви­дов работ с использованием метаболической энергии - это, как правило, процессы, протекающие внутри клетки. Поэтому важней­шим эффектором, через который можно оказать регулирующее воз­действие на обмен веществ и энергии, является клетка органов и тканей. Регуляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

    Наиболее частыми эффектами регуляторных воздействий на клетку являются изменения: каталитической активности ферментов и их концентрации, сродства фермента и субстрата, свойств микросреды,


    В которой функционируют ферменты. Регуляция активности фер­ментов может осуществляться различными способами. "Тонкая на­стройка" каталитической активности ферментов достигается посред­ством влияния веществ - модуляторов, которыми часто являются сами метаболиты. Этим способом осуществляется регуляция отдель­ных звеньев метаболических превращений. При этом модулятор может оказывать своей воздействие в отдельной или нескольких тканях организма.

    Метаболизм клетки в целом невозможен без интеграции многих биохимических превращений и сама возможность его осуществления определяется энергетическим и окислительно-восстановительным потенциалом клетки. Эта общая интеграция метаболизма обеспечи­вается, главным образом, с помощью аденилатов, участвующих в регуляции любых метаболических превращений клетки.

    Интеграция обмена белков, жиров и углеводов клетки осущест­вляется посредством общих для них источников энергии. Действи­тельно, при биосинтезе любых простых и сложных органических слоединений, марокмолекул и надмолекулярных структур в качестве общих источников энергии используется АТФ, которая поставляет энергию для процессов фосфорилирования, или НАД Н, НАДФ Н, поставляющие энергию для восстановления окислительных соедине­ний. Таким образом, если в клетке осуществлять синтез (анаболизм) определенных веществ, то он может происходить за счет затраты химической энергии одного из общих подвижных источников (АТФ, НАД Н, НАДФ-Н), которые образуются при катаболизме других веществ (см.рис.10.1).

    За общий энергетический запас клетки, полученный в ходе ката­болизма и являющийся движущей силой разнообразных превраще­ний, конкурируют все анаболические и другие процессы, протека­ющие с затратой энергии. Так, например, осуществление глюкоста-тической функции печени, основанной на способности печени син­тезировать глюкозу из лактата и аминокислот {глюконеогенез), несо­вместимо с одновременным синтезом жиров и белков. Глюконеоге­нез сопровождается расщеплением в печени белков и жиров и окис­лением образующихся при этом жирных кислот, что ведет к осво­бождению энергии, необходимой для синтеза АТФ и НАД Н, в свою очередь требующихся для глюконеогенеза.

    Еще одним проявлением интеграции метаболических превращений белков, жиров и углеводов является существование общих предше­ственников и общих промежуточных продуктов обмена веществ. Это - общий фонд углерода, общий промежуточный продукт обме­на- ацетил- КоА и другие вещества. Важнейшими конечными путями превращений, связующими метаболические процессы на различных этапах, являются цикл лимонной кислоты и реакции дыхательной цепи, протекающие в митохондриях. Так, цикл лимонной кисло­ты - главный источник СО 2 для последующих реакций глюконеоге­неза, синтеза жирных кислот и мочевины.

    Одним из механизмов согласования общих метаболических по­требностей организма с потребностями клетки являются нервные и


    гормональные влияния на ключевые ферменты. Характерными осо­бенностями этих ферментов являются: положение в начале того метаболического пути, к которому принадлежит фермент; прибли­женность расположения или ассоциированность со своим субстра­том; реагирование не только на действие внутриклеточных регуля­торов метаболизма, но и на внеклеточные нервные и гормональные воздействия.

    Примерами ключевых ферментов являются гликогенфосфорилаза, фосфофруктокиназа, липаза. Их роль в процессах регуляции мета­болизма видна, в частности, при подготовке организма к "борьбе или бегству". При повышении в этих условиях в крови уровня адреналина до 10 -9 М он связывается с адренорецепторами плазма­тической мембраны, активирует аденилатциклазу, которая катализи­рует превращение АТФ в циклический АМФ. Последний активирует гликогенфосфорилазу, многократно усиливающую расщепление гли­когена в печени.

    Процесс гликогенолиза в мышцах может одновременно активиро­ваться нервной системой и катехоламинами. Этот эффект достига­ется посредством выделения ионов Са ++ , его связывания с кальмо-дулином, являющимся субъединицей фосфорилазы, которая при этом активируется и приводит к мобилизации гликогена. Нервный меха­низм мобилизации гликогена осуществляется через меньшее число промежуточных этапов, чем гормональный. Этим достигается его быстродействие.

    Удовлетворение энергетических потребностей организма посред­ством ускорения внутриклеточных процессов расщепления триглице-ридов в жировой клетчатке достигается активацией гормончувстви-тельной липазы. Повышение активности этого фермента (адренали­ном, норадреналином, глюкагоном) приводит к мобилизации сво­бодных жирных кислот, являющихся основным энергетическим суб­стратом окисления в мышцах при выполнении ими интенсивной и длительной работы.

    Переход органов и тканей с одного уровня функциональной ак­тивности на другой всегда сопровождается соответствующими изме­нениями их трофики. Например, при рефлекторном сокращении скелетных мышц нервная система осуществляет не только пусковое действие, но и трофическое путем усиления в них местного кро­вотока и интенсивности обмена веществ. Увеличение силы сокра­щений миокарда под влиянием симпатической нервной системы обеспечивается одновременным усилением коронарного кровотока и метаболизма в мышце сердца. О влиянии нервной системы на тро­фику скелетных мышц свидетельствует тот факт, что денервация мышцы приводит к постепенной атрофии мышечных волокон. Важ­нейшее значение в осуществлении трофической функции нервной системы играет ее симпатический отдел. Через симпато-адреналовую систему достигается не только активация обмена веществ и энергии в клетке, но и создаются дополнительные условия для ускорения метаболизма. Норадреналин и адреналин, выброс которых в крово­ток возрастает при возбуждении симпатической нервной системы,


    Вызывают увеличение глубины дыхания, расширяют мускулатуру бронхов, что способствует доставке кислорода в кровь. Адреналин, оказывая положительное инотропное и хронотропное действие на сердце, увеличивает минутный объем крови, повышает систоличес­кое артериальное давление. В результате активации дыхания и кро­вообращения возрастает доставка кислорода к тканям.

    Одним из интегральных показателей внутренней среды, отража­ющим обмен в организме углеводов, белков и жиров, является концентрация в крови глюкозы. Глюкоза является не только энер­гетическим субстратом, необходимым для синтеза жиров и белков, но и источником их синтеза. В печени происходит новообразование углеводов из жирных кислот и аминокислот.

    Нормальное функционирование клеток нервной системы, мышц, для которых глюкоза является важнейшим энергосубстратом, воз­можно при условии, что приток к ним глюкозы обеспечит их энер­гетические потребности. Это достигается при содержании в литре крови у человека в среднем 1 г (0,8-1,2 г) глюкозы (рис. 10.3.).

    При снижении содержания глюкозы в литре крови до уровня менее 0,5 г, вызванном голоданием, передозировкой инсулина, име­ет место недостаточность снабжения энергией клеток мозга. Нару­шение их функций проявляется учащением сердцебиения, слабостью и тремором мышц, головокружением, усилением потоотделения, ощущением голода. При дальнейшем снижении концентрации глю­козы в крови указанное состояние, именуемое гипогликемией, может перейти в гипогликемическую кому, характеризующуюся угнетением функций мозга вплоть до потери сознания. Введение в кровь глю­козы, прием сахарозы, инъекция глюкагона предупреждают или ос­лабляют эти проявления гипогликемии.

    Кратковременное повышение уровня глюкозы в крови {гипергли­кемия) не представляет угрозы для жизни, но может приводить к повышению осмотического давления крови.

    В нормальных условиях во всей крови организма содержится около 5 г глюкозы. При среднесуточном потреблении с пищей взрослым человеком, занимающимся физическим трудом, 430 г углеводов в условиях относительного покоя, тканями ежеминутно потребляется около 0,3 г глюкозы. При этом запасов глюкозы в циркулирующей крови достаточно для питания тканей на 3-5 минут и без ее вос­полнения неминуема гипогликемия. Потребление глюкозы возрастает при физической и психоэмоциональной нагрузках. Так как пери­одический (несколько раз в день) прием углеводов с пищей не обеспечивает постоянного и равномерного притока глюкозы из ки­шечника в кровь, в организме существуют механизмы, восполня­ющие убыль глюкозы из крови в количествах, эквивалентных ее потреблению тканями. Механизмы с другой направленностью дей­ствия обеспечивают в нормальных условиях превращение глюкозы в запасаемую форму - гликоген. При уровне более 1,8 г в литре крови происходит выведение ее из организма с мочой.

    Избыток глюкозы, всосавшейся из кишечника в кровь воротной вены, поглощается гепатоцитами. При повышении в них концент-


    Рис. 10.3 Система регуляции уровня глюкозы в крови (Пояснения в тексте)


    Рации глюкозы активируется ферменты углеводного обмена печени, превращающие глюкозу в гликоген. В ответ на повышение уровня сахара в крови, протекающей через поджелудочную железу, возрас­тает секреторная активность В -клеток островков Лангерганса. В кровь выделяется большее количество инсулина - единственного гормона, обладающего резким понижающим концентрацию сахара в крови действием. Под влиянием инсулина повышается проница­емость для глюкозы плазматических мембран клеток мышечной жировой тканей. Инсулин активирует в печени и мышцах процессы превращения глюкозы в гликоген, улучшает ее поглощение и усво­ение скелетными, гладкими и сердечной мышцами. Под влиянием инсулина в клетках жировой ткани из глюкозы синтезируются жиры. Одновременно, выделяющийся в больших количествах инсулин тор­мозит распад гликогена печени и глюконеогенез.

    Содержание глюкозы в крови оценивается глюкорецепторами пе­реднего гипоталамуса, а также его полисенсорными нейронами. В ответ на повышении уровня глюкозы в крови выше "заданного значения" (>1,2 г/л) повышается активность нейронов гипоталамуса, которые посредством влияния парасимпатической нервной системы на поджелудочную железу усиливают секрецию инсулина.

    При понижении уровня глюкозы в крови уменьшается ее погло­щение гепатоцитами. В поджелудочной железе снижается секретор­ная активность В -клеток, уменьшается секреция инсулина. Тормо­зятся процессы превращения глюкозы в гликоген в печени и мыш­цах, уменьшается поглощение и усвоение глюкозы скелетными и гладкими мышцами, жировыми клетками. При участии этих меха­низмов замедляется или предотвращается дальнейшее понижение уровня глюкозы в крови, которое могло бы привести к развитию гипогликемии.

    При уменьшении концентрации глюкозы в крови имеет место повышении тонуса симпатической нервной системы. Под ее влия­нием усиливается секреция в мозговом веществе надпочечников адреналина и норадреналина. Адреналин, стимулируя распад глико­гена в печени и мышцах вызывает повышение концентрации сахара в крови. По этому свойству адреналин является наиболее важным антагонистом инсулина среди других гормонов системы регуляции уровня сахара в крови. Например, норадреналин обладает слабовы-раженной способностью повышать уровень глюкозы в крови.

    Под влиянием симпатической нервной системы стимулируется выработка а-клетками поджелудочной железы глюкагона, который активирует распад гликогена печени, стимулирует глюконеогенез и приводит к повышению уровня глюкозы в крови.

    Понижение в крови концентрации глюкозы, являющейся для ор­ганизма одним из наиболее важных энергетических субстратов, вы­зывает развитие стресса. В ответ на снижение уровня сахара крови глюкорецепторные нейроны гипоталамуса через рилизинг-гормоны стимулируют секрецию гипофизом в кровь гормона роста и адрено-кортикотропного гормона. Под влиянием гормона роста уменьшается проницаемость клеточных мембран для глюкозы, усиливается глю-


    Конеогенез, активируется секреция глюкагона, в результате чего уровень сахара в крови увеличивается. Гормон роста оказывает анаболические эффекты на обмен белков и жиров. Под его влия­нием увеличивается содержание белка, снижается количество экс-кретируемого азота, увеличивается концентрация в плазме свободных жирных кислот.

    Секретируемые под действием адренокортикотропного гормона в коре надпочечников глкжокортикоиды активируют ферменты глюко-неогенеза в печени и этим способствуют увеличению содержания сахара в крови. Одновременно под действием глкжокортикоидов уменьшается включение аминокислот в белки и увеличивается ско­рость выведения из организма азота. Глкжокортикоиды повышают эффективность липолиза в жировой ткани и мобилизации в кровь свободных жирных кислот.

    Регуляция обмена веществ и энергии в целостном организме находится под контролем нервной системы и ее высших отделов. Об этом свидетельствуют факты условнорефлекторного изменения ин­тенсивности метаболизма у спортсменов в предстартовом состоянии, у рабочих перед началом выполнения тяжелой физической работы, у водолазов перед их погружением в воду. В этих случаях увели­чивается скорость потребления организмом кислорода, возрастает минутный объем дыхания, минутный объем кровотока, усиливается энергообмен.

    Развивающееся при снижении в крови содержания глюкозы, сво­бодных жирных кислот, аминокислот чувство голода обусловливает поведенческую реакцию, направленную на поиск и прием пищи и восполнение в организме питательных веществ.

    ОБМЕН УГЛЕВОДОВ.

    Биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией.Энергетическая ценность 1 г углеводов составляет 16,7 кДж (4,0 ккал). Углеводы являются непосредственным источником энергии для всех клеток организма, выполняют пластическую и опорную функции.

    Суточная потребность взрослого человека в углеводах составляет около0,5 кг. Основная часть их (около 70%) окисляется в тканях до воды и углекислого газа. Около 25-28% пищевой глюкозы превращается в жир и только 2-5% ее синтезируется в гликоген - резервный углевод организма.

    Единственной формой углеводов, которая может всасываться, являются моносахара. Они всасываются главным образом в тонком кишечнике, током крови переносятся в печень и к тканям. В печени из глюкозы синтезируется гликоген. Этот процесс носит название гликогенеза. Гликоген может распадаться до глюкозы. Это явление называют гликогенолизом. В печени возможно новообразование углеводов из продуктов их распада (пировиноградной или молочной кислоты), а также из продуктов распада жиров и белков (кетокислот), что обозначается какгликонеогенез. Гликогенез, гликогенолиз и гликонеогенез - тесно взаимосвязанные и протекающие в печени процессы, обеспечивающие оптимальный уровень сахара крови.

    В мышцах, так же как и в печени, синтезируется гликоген. Распад гликогена является одним из источников энергии мышечного сокращения. При распаде мышечного гликоген? процесс идет до образования пировиноградной и молочной кислот. Этот процесс называютгликолизом. В фазе отдыха из молочной кислоты в мышечной ткани происходит ре-синтез гликогена.

    Головной мозг содержит небольшие запасы углеводов и нуждается в постоянном поступлении глюкозы. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. Энергетические расходы мозга покрываются исключительно за счет углеводов. Снижение поступления в мозг глюкозы сопровождается изменением обменных процессов в нервной ткани и нарушением функций мозга.



    Образование углеводов из белков и жиров (гликонеогенез). В результате превращения аминокислот образуется пировиноградная кислота, при окислении жирных кислот - ацетилкоэнзим А, который может превращаться в пировиноградную кислоту - предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии - углеводами и жирами - существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. В кровь меньше поступает свободных жирных кислот. Если возникает гипогликемия, то процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты.

    ВОДНО-СОЛЕВОЙ ОБМЕН.

    Все химические и физико-химические процессы, протекающие в организме, осуществляются в водной среде. Вода выполняет в организме следующие важнейшие функции: 1) служит растворителем продуктов питания и обмена; 2) переносит растворенные в ней вещества; 3) ослабляет трение между соприкасающимися поверхностями в теле человека; 4) участвует в регуляции температуры тела за счет большой теплопроводности, большой теплоты испарения.

    Принято делить воду на внутриклеточную, интрацеллюлярную (72%) и внеклеточную, экстрацеллюлярную (28%). Внеклеточная вода размещена внутри сосудистого русла (в составе крови, лимфы, цереброспинальной жидкости) и в межклеточном пространств Вода поступает в организм через пищеварительный тракт в виде жидкости или воды, содержащейся в плотных пищевых продуктах. Некоторая часть воды образуется в самом организме в процессе обмена веществ.

    При избытке в организме воды наблюдается общая гипергидратация (водное отравление), при недостатке воды нарушается метаболизм. Потеря 10% воды приводит к состоянию дегидратации (обезвоживание), при потере 20% воды наступает смерть. Вместе с водой в организм поступают и минеральные вещества (соли). Около 4% сухой массы пищи должны составлять минеральные соединения.

    Важной функцией электролитов является участие их в ферментативных реакциях.

    Натрий обеспечивает постоянство осмотического давления внеклеточной жидкости, участвует в создании биоэлектрического мембранного потенциала, в регуляции кислотно- основного состояния.

    Калий обеспечивает осмотическое давление внутриклеточной жидкости, стимулирует образование ацетилхолина. Недостаток ионов калия тормозит анаболические процессы в организме.

    Хлор является также важнейшим анионом внеклеточной жидкости, обеспечивая постоянство осмотического давления.

    Кальций и фосфор находятся в основном в костной ткани (свыше 90%). Содержание кальция в плазме и крови является одной из биологических констант, так как даже незначительные сдвиги в уровне этого иона могут приводить к тяжелейшим последствиям для организма. Снижение уровня кальция в крови вызывает непроизвольные сокращения мышц, судороги, и вследствие остановки дыхания наступает смерть. Повышение содержания кальция в крови сопровождается уменьшением возбудимости нервной и мышечной тканей, появлением парезов, параличей, образованием почечных камней. Кальций необходим для построения костей, поэтому он должен поступать в достаточном количестве в организм с пищей.

    Фосфор участвует в обмене многих веществ, так как входит в состав макроэргических соединений (например, АТФ). Большое значение имеет отложение фосфора в костях.

    Железо входит в состав гемоглобина, миоглобина, ответственных за тканевое дыхание, а также в состав ферментов, участвующих в окислительно-восстановительных реакциях. Недостаточное поступление в организм железа нарушает синтез гемоглобина. Уменьшение синтеза гемоглобина ведет к анемии (малокровию). Суточная потребность в железе взрослого человека составляет 10-30 мкг.

    Иод в организме содержится в небольшом количестве. Однако его значение велико. Это связано с тем, что йод входит в состав гормонов щитовидной железы, оказывающих выраженное влияние на все обменные процессы, рост и развитие организма.

    Витамины

    Витамины (от лат. «вита» - жизнь) - биологически активные вещества, необходимые для жизнедеятельности организма. Они способствуют нормальному протеканию всех жизненных процессов. Витамины были открыты русским врачом Н. И. Луниным (1853- 1937). Витамины способствуют укреплению здоровья, увеличивают сопротивляемость организма к простудным и инфекционным заболеваниям, повышают работоспособность. При недостатке того или иного витамина - гиповитаминозе - или при отсутствии витаминов - авитаминозе - наступают глубокие нарушения в процессах обмена веществ, ведущие к тяжелым заболеваниям, вплоть до гибели организма. Организм человека не способен синтезировать витамины и должен ежедневно получать их с пищей, прежде всего с растительной.

    Обозначаются витамины заглавными буквами латинского алфавита: А, В, С, D, Е, К, РР, Н. Некоторые буквы, например В, охватывают целые группы: от В1 до В15.

    Витамин А

    Важнейший из витаминов - витамин А. Его называют витамином роста, он участвует в окислительно-восстановительных реакциях обмена. При нехватке витамина А в организме наблюдается сухость кожи, сухость роговицы глаз и ее помутнение. С недостатком витамина А связано нарушение сумеречного зрения («куриная слепота»). Наиболее богаты витамином А печень, сливочное масло, молоко, морковь, абрикосы и др.

    Витамин С

    Витамин С, или аскорбиновая кислота, синтезируется в растениях и накапливается в шиповнике, лимоне, черной смородине, зеленом луке, плодах клюквы и т. д. В настоящее время разработан промышленный синтез витамина С. При его недостатке развивается цинга. Особенно чувствуется нехватка витамина С к весне (у человека появляются сонливость, усталость, апатия).

    Витамин D

    Витамин D играет важную роль в обмене кальция, фосфора и в целом - в процессе образования костей. При отсутствии витамина D соли кальция и фосфора не откладываются н костях, а выводятся из организма и поэтому кости, особенно у детей, размягчаются. Под тяжестью тела ноги искривляются, на ребрах образуются утолщения

    Четки, задерживается развитие зубов. Наиболее богаты витамином D печень рыб, сливочное масло, икра, желток яиц. Растения содержат вещество, близкое к витамину D,

    Эргостерин, который под влиянием солнечных и ультрафиолетовых лучей переходит в витамин D.

    Витамины группы В

    Витамины группы В (В1 В2 В6 В12 и др.) регулируют многие ферментативные реакции обмена веществ, особенно обмена белков, аминокислот, нуклеиновых кислот. При их недостатке нарушаются функции нервной системы (болезнь бери-бери), желудочно- кишечного тракта (поносы), кроветворных органов (малокровие) и др. Эти витамины содержатся в печени млекопитающих и некоторых рыб, в почках, петрушке и др.

    Витамин РР

    Витамин РР необходим для нормальной нервно-психической деятельности.

    Образование и расход энергии.

    Энергия, освобождающаяся при распаде органических веществ, накапливается в форме АТФ, количество которой в тканях организма поддерживается на высоком уровне. АТФ содержится в каждой клетке организма. Наибольшее количество ее обнаруживается в скелетных мышцах - 0,2-0,5%. Любая деятельность клетки всегда точно совпадает по времени с распадом АТФ.

    Разрушившиеся молекулы АТФ должны восстановиться. Это происходит за счет энергии, которая освобождается при распаде углеводов и других веществ.

    О количестве затраченной организмом энергии можно судить по количеству тепла, которое он отдает во внешнюю среду. Основной обмен и его значение.

    Основной обмен - минимальное количество энергии, необходимое для поддержания нормальной жизнедеятельности организма в состоянии полного покоя при исключении всех внутренних и внешних влияний, которые могли бы повысить уровень обменных процессов. Основной обмен веществ определяют утром натощак (через 12-14 ч после последнего приема пищи), в положении лежа на спине, при полном расслаблении мышц, в условиях температурного комфорта (18-20° С). Выражается основной обмен количеством энергии, выделенной организмом (кДж/сут).

    В состоянии полного физического и психического покоя организм расходует энергию на: 1) постоянно совершающиеся химические процессы; 2) механическую работу, выполняемую отдельными органами (сердце, дыхательные мышцы, кровеносные сосуды, кишечник и др.); 3) постоянную деятельность железисто-секреторного аппарата.

    Основной обмен веществ зависит от возраста, роста, массы тела, пола. Самый интенсивный основной обмен веществ в расчете на 1 кг массы тела отмечается у детей. С увеличением массы тела усиливается основной обмен веществ.

    Средняя величина основного обмена веществ у здорового человека равна приблизительно 4,2 кДж (1 ккал) в 1 ч на 1 кг массы тела.

    По расходу энергии в состоянии покоя ткани организма неоднородны. Более активно расходуют энергию внутренние органы, менее активно - мышечная ткань. Интенсивность основного обмена веществ в жировой ткани в 3 раза ниже, чем в остальной клеточной массе организма. Худые люди производят больше тепла на 1 кг массы тела, чем полные.

    У женщин основной обмен веществ ниже, чем у мужчин. Это связано с тем, что у женщин меньше масса и поверхность тела. Согласно правилу Рубнера основной обмен веществ приблизительно пропорционален поверхности тела.

    Отмечены сезонные колебания величины основного обмена веществ - повышение его весной и снижение зимой. Мышечная деятельность вызывает повышение обмена веществ пропорционально тяжести выполняемой работы.

    К значительным изменениям основного обмена приводят нарушения функций органов и систем организма. При повышенной функции щитовидной железы, малярии, брюшном тифе, туберкулезе, сопровождающихся лихорадкой, основной обмен веществ усиливается. Расход энергии при физической нагрузке.

    При мышечной работе значительно увеличиваются энергетические затраты организма. Это увеличение энергетических затрат составляет рабочую прибавку, которая тем больше, чем интенсивнее работа.

    По сравнению со сном при медленной ходьбе расход энергии увеличивается в 3 раза, а при беге на короткие дистанции во время соревнований - более чем в 40 раз. При кратковременных нагрузках энергия расходуется за счет окисления углеводов. При длительных мышечных нагрузках в организме расщепляются преимущественно жиры (80% всей необходимой энергии). У тренированных спортсменов энергия мышечных сокращений обеспечивается исключительно за счет окисления жиров. У человека, занимающегося физическим трудом, энергетические затраты возрастают пропорционально интенсивности труда.

    Для людей, выполняющих легкую работу сидя, нужно 2400 - 2600 ккал в сутки, работающих с большей мышечной нагрузкой, требуется 3400 - 3600 ккал, выполняющих тяжелую мышечную работу - 4000-5000 ккал и выше. У тренированных спортсменов при кратковременных интенсивных упражнениях величина рабочего обмена может в 20 раз превосходить основной обмен. Потребление кислорода при физической нагрузке не отражает общего расхода энергии, так как часть ее тратится на гликолиз (анаэробный) и не требует затраты кислорода.

    ПИТАНИЕ:

    Восполнение энергетических затрат организма происходит за счет питательных веществ. В пище должны содержаться белки, углеводы, жиры, минеральные соли и витамины в небольших количествах и правильном соотношении. Усвояемость пищевых веществ зависит от индивидуальных особенностей и состояния организма, от количества и качества пищи, соотношения различных составных частей ее, способа приготовления. Растительные продукты усваиваются хуже, чем продукты животного происхождения, потому что в растительных продуктах содержится большее количество клетчатки. Белковый режим питания способствует осуществлению процессов всасывания и усвояемости пищевых веществ. При преобладании в пище углеводов усвоение белков и жиров снижается. Замена растительных продуктов продуктами животного происхождения усиливает обменные процессы в организме. Если вместо растительных давать белки мясных или молочных продуктов, а вместо ржаного хлеба - пшеничный, то усвояемость продуктов питания значительно повышается.

    Таким образом, чтобы обеспечить правильное питание человека, необходимо учитывать степень усвоения продуктов организмом. Кроме того, пища должна обязательно содержать все незаменимые (обязательные) питательные вещества: белки и незаменимые аминокислоты, витамины, высоконепредельные жирные кислоты, минеральные вещества и воду.

    Основную массу пищи (75-80%) составляют углеводы и жиры.

    Пищевой рацион - количество и состав продуктов питания, необходимых человеку в сутки. Он должен восполнять суточные энергетические затраты организма и включать в достаточном количестве все питательные вещества.

    Для составления пищевых рационов необходимо знать содержание белков, жиров и углеводов в продуктах и их энергетическую ценность. Имея эти данные, можно составить научно обоснованных пищевой рацион для людей разного возраста, пола и рода занятий.

    Режим питания и его физиологическое значение.

    Необходимо соблюдать определенный режим питания, правильно его организовать: постоянные часы приема пищи, соответствующие интервалы между ними, распределение суточного рациона в течение дня. Принимать пищу следует всегда в определенное время не реже 3 раз в сутки: завтрак, обед и ужин. Завтрак по энергетической ценности должен составлять около 30% от общего рациона, обед - 40-50%, а ужин - 20-25%. Рекомендуется ужинать за 3 ч до сна.

    Правильное питание обеспечивает нормальное физическое развитие и психическую деятельность, повышает работоспособность, реактивность и устойчивость организма к влиянию окружающей среды.

    Согласно учению И. П. Павлова об условных рефлексах, организм человека приспосабливается к определенному времени приема пищи: появляется аппетит и начинают выделяться пищеварительные соки. Правильные промежутки между приемами пищи обеспечивают чувство сытости в течение этого времени.

    Трехкратный прием пищи в общем физиологичен. Однако предпочтительнее четырехразовое питание, при котором повышается усвоение пищевых веществ, в частности белков, не ощущается чувство голода в промежутках между отдельными приемами пищи и сохраняется хороший аппетит. В этом случае энергетическая ценность завтрака составляет 20%, обед - 35%, полдник-15%, ужин - 25%.

    Рациональное питание. Питание считается рациональным, если полностью удовлетворяется потребность в пище в количественном и качественном отношении, возмещаются все энергетические затраты. Оно содействует правильному росту и развитию организма, увеличивает его сопротивляемость вредным воздействиям внешней среды, способствует развитию функциональных возможностей организма и повышает интенсивность труда. Рациональное питание предусматривает разработку пищевых рационов и режимов питания применительно к различным контингентам населения и условиям жизни.

    Как уже указывалось, питание здорового человека строится на основании суточных пищевых рационов. Рацион и режим питания больного называются диетой. Каждая диета имеет определенные составные части пищевого рациона и характеризуется следующими признаками: 1) энергетической ценностью; 2) химическим составом; 3) физическими свойствами (объем, температура, консистенция); 4)режимом питания.

    Принципы составления пищевых рационов

    Питание должно точно соответствовать потребностям организма в пластических веществах и энергии, минеральных солях, витаминах и воде, обеспечивать нормальную жизнедеятельность, хорошее самочувствие, высокую работоспособность, сопротивляемость инфекциям, рост и развитие организма. При составлении пищевого рациона (т. е. количества и состава продуктов питания, необходимых человеку в сутки) следует соблюдать ряд принципов.

    1. Калорийность пищевого рациона должна соответствовать энергетическим затратам организма, которые определяются видом трудовой деятельности.

    2. Учитывается калорическая ценность питательных веществ, для этого используются специальные таблицы, в которых указано процентное содержание в продуктах белков, жиров и углеводов и калорийность 100 г продукта.

    3. Используется закон изодинамии питательных веществ, т. е. взаимозаменяемость белков, жиров и углеводов, исходя из их энергетической ценности. Например, 1 г жира (9,3 ккал) можно заменить 2,3 г белка или углеводов. Однако такая замена возможна только на короткое время, так как питательные вещества выполняют не только энергетическую, но и пластическую функцию.

    4. В пищевом рационе должно содержаться оптимальное для данной группы работников количество белков, жиров и углеводов, например, для работников 1-й группы в суточном рационе должно быть 80 -120 г белка, 80 -100 г жира, 400 - 600 г углеводов.

    5. Соотношение в пищевом рационе количества белков, жиров и углеводов должно быть 1:1,2:4.

    6. Пищевой рацион должен полностью удовлетворять потребность организма в витаминах, минеральных солях и воде, а также -одержать все незаменимые аминокислоты (полноценные белки).

    7. Не менее одной трети суточной нормы белков и жиров должно поступать в организм в виде продуктов животного происхождения.

    8. Необходимо учитывать правильное распределение калорийности рациона по отдельным приемам пищи. Первый завтрак должен содержать примерно 25-30% всего суточного рациона, второй завтрак - 10-15%, обед 40 - 45% и ужин - 15-20%.

    Регуляция обмена веществ и энергии.

    Условно-рефлекторные изменения обмена веществ и энергии наблюдаются у человека в предстартовых и предрабочих состояниях. У спортсменов до начала соревнования, а у рабочего перед работой отмечается повышение обмена веществ, температуры тела, увеличивается потребление кислорода и выделение углекислого газа. Можно вызвать условно-рефлекторные изменения обмена веществ, энергетических и тепловых процессов у людей на словесный раздражитель.

    Влияние нервной системы на обменные и энергетические процессы в организме осуществляется несколькими путями:

    Непосредственное влияние нервной системы (через гипоталамус, эфферентные нервы) на ткани и органы;

    Опосредованное влияние нервной системы через гипофиз (соматотропин);

    Опосредованное влияние нервной системы через тропные гормоны гипофиза и периферические железы внутренней секреции;

    Прямое влияние нервной системы (гипоталамус) на активность желез внутренней секреции и через них на обменные процессы в тканях и органах.

    Основным отделом центральной нервной системы, который регулирует все виды обменных и энергетических процессов, является гипоталамус. Выраженное влияние на обменные процессы и теплообразование оказывают железы внутренней секреции. Гормоны коры надпочечников и щитовидной железы в больших количествах усиливают катаболизм, т. е. распад белков.

    В организме ярко проявляется тесное взаимосвязанное влияние нервной и эндокринной систем на обменные и энергетические процессы. Так, возбуждение симпатической нервной системы не только оказывает прямое стимулирующее влияние на обменные процессы, но при этом увеличивается секреция гормонов щитовидной железы и надпочечников (тироксин и адреналин). За счет этого дополнительно усиливается обмен веществ и энергии. Кроме того, эти гормоны сами повышают тонус симпатического отдела нервной системы. Значительные изменения в метаболизме и теплообмене происходят при дефиците в организме гормонов желез внутренней секреции. Например, недостаток тироксина приводит к снижению основного обмена. Это связано с уменьшением потребления кислорода тканями и ослаблением теплообразования. В результате снижается температура тела.

    Гормоны желез внутренней секреции участвуют в регуляции обмена веществ и энергии, изменяя проницаемость клеточных мембран (инсулин), активируя ферментные системы организма (адреналин, глюкагон и др.) и влияя на их биосинтез (глюкокортикоиды). Таким образом, регуляция обмена веществ и энергии осуществляется нервной и эндокринной системами, которые обеспечивают приспособление организма к меняющимся условиям его обитания.